References
Abdollahi-Arpanahi, R., Morota, G., Valente, B.D., Kranis, A., Rosa, G.J.M., Gianola, D., 2015. Assessment of bagging GBLUP for whole-genome prediction of broiler chicken traits. Journal of Animal Breeding and Genetics 132, 218-228.
Ashoori-Banaei, S., Ghafouri-Kesbi, F., Ahmadi, A., 2021. Comparison of regression tree-based methods in genomic selection. Journal of Genetics 100, 85.
Budhlakoti, N., Kushwaha, A.K., Rai, A., Chaturvedi, K.K., Kumar, A., Pradhan, A.K., 2022. Genomic selection: a tool for accelerating the efficiency of molecular breeding for development of climate resilient crops. Frontiers in Genetics 13, 66.
Dekkers, J.C., 2004. Commercial application of marker-and gene-assisted selection in livestock: strategies and lessons. Journal of Animal Science 82, E313-E32
de Sousa, I.C.D., Nascimento, M., Silva, G.N., Nascimento, A.C.C., Cruz, C.D., Silva, F.F., Almeida, D.P.D., Pestana, K.N., Azevedo, C.F., Zambolim, L., 2021. Genomic prediction of leaf rust resistance to Arabica coffee using machine learning algorithms. Scientia Agricola 78, e20200021.
Fernando, R.L., Grossman, M., 1989. Marker-assisted selection using best linear unbiased prediction. Genetic Selection Evolution 2, 246-477.
Gianola, D., Weigel, K.A., Kramer, N., Stella, A., Schon, C.C., 2014. Enhancing genome-enabled prediction by bagging genomic BLUP. PlosOne: e91693.
González-Recio, O., Forni, S., 2011. Genome-wide prediction of discrete traits using Bayesian regressions and machine learning. Genetics Selection Evolution 43, 7.
Hastie, T.J., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning. 2nd ed. Springer, New York, USA.
Hayes, B.J., Daetwyler, H.D., Bowman, P., Moser, G., Tier, B., Crump, R., Khatkar, M., Raadsma H.W., Goddard M.E., 2010 Accuracy of genomic selection: comparing theory and results. In: Proceedings of the 18th Conference of the Association for the Advancement of Animal Breeding and Genetics. Barossa Valley (Australia). 27 September–2 October 2009, (Barossa Valley, Australia).
Hill, W.G., Robertson, A., 1968. Linkage disequilibrium in finite populations. Theoretical and Applied Genetics 38, 226-231.
Howard, R., Carriquiry, A.L., Beavis, W.D., 2014. Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures. Genetics 4, 1027-1046.
Jafarzadeh, H., Mahdianpari, M., Gill, E., Mohammadimanesh, F., Homayouni, S., 2021. Bagging and boosting ensemble classifiers for classification of multispectral, hyperspectral and PolSAR data: A comparative evaluation. Remote Sensors 13, 4405.
James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An Introduction to Statistical Learning: with Applications in R. Springer, New York, USA.
Legarra, A., Reverter, A., 2018. Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method. Genetic Selection Evolution 50, 53.
Liaw, A., Wiener, M., 2018. Breiman and Cutler’s random forests for classification and regression. Available at:
http://cran.r-project.org/web/ packages/randomForest/index.html.
Mohammadi-Chamachar, N., Hafezian, S.H., Honarvar, M., Farhadi, A., 2015. Effects of heritability and number of quantitative trait loci (QTL) on accuracy of genomic estimated breeding value. Journal of Ruminant Research 3, 111-124 (in Farsi with English Abstract).
Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E., 2001. Prediction of total genetic value using genome wide dense marker maps. Genetics 157, 1819-1829.
Oguto, J.O., Piepho, H.P., Schulz-Streeck, T., 2011. A comparison of random forests, Gradient Boosting and support vector machines for genomic selection. BMC Proceedings 5, 11.
R Development Core Team., 2023. R: A language and environment for statistical computing. Vienna, Austria. Available at:
https://www.R-project.org/.
Spelman, R., Garrick, D., 1997. Utilization of marker assisted selection in a commercial dairy cow population. Livestock Production Science 47, 139-147.
Sahebalam, H., Gholizadeh, M., Hafezian, H., Ebrahimi, F., 2022. Evaluation of Bagging approach versus GBLUP and Bayesian LASSO in genomic prediction. Journal of Genetics 101, 19.
Therneau, T., Atkinsonm., B., Ripley, B., 2019.
rpart: Recursive partitioning for classification, regression and survival trees. An implementation of most of the functionality of the 1984 book by Breiman, Friedman, Olshen and Stone. Available at:
https://cran.r-project.org/web/packages/rpart/index.html.
Valiati Barreto, C.A., Dias, K., de Sousa, I.C., Azevedo, C.F., Nascimento, A.C.C., Guimarães, L.G.M., Guimarães, C.T., Pastina, M.M., Nascimento, M., 2024. Genomic prediction in multi‑environment trials in maize using statistical and machine learning methods. Scientific Reports 14, 1062.
Zhang, A., Wang, H., Beyene, Y., Semagn, K., 2017. Effect of trait heritability, training population size and marker density on genomic prediction accuracy estimation in 22 bi-parental tropical maize populations. Frontiers in Plant Science 8, 1916.