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Abstract The aim of the present study was to compare the predictive 

performance of the Bagging algorithm with other decision tree-based methods, 
including Regression Tree (RT), Random Forest (RF) and Boosting in genomic 
selection. A genome including ten chromosomes for 1,000 individuals on which 
10,000 single nucleotide polymorphisms (SNP) were evenly distributed was 
simulated. QTL effects were assigned to 10% of the polymorphic SNPs, with 
effects sampled from a gamma distribution. Predictive performance measures 
including accuracy of prediction, reliability and bias were used to compare the 
methods. Computing time and memory requirements of the studied methods were 
also measured. In all methods studied, the accuracy of genomic evaluation 
increased following increase in the heritability level from 0.10 to 0.50. While RT 
was the most efficient user of time and memory, it was not recommended for 
genomic selection due to its poor predictive performance. The obtained results 
showed that the predictive performance of Bagging was equal to RF and higher 
than RT and Boosting. However, it required significantly higher computational 
time and memory requirements. Considering the overall performance, Bagging 
was recommended for genomic selection, especially when due to the size and 
structure of the genomic data, the use of RF is limited. 

Keywords: gamma distribution, genomic selection, heritability, regression tree, 
SNP 

 
 

Introduction 
compared to the conventional BLUP (Spealman and Garrik,   

In recent decades, researchers have attempted to identify  1997). With the successful completion of the human  
the genes or inf luent ial chromosomal segments  genome sequencing and advances in polymorphism   
underlying the economic traits for use as molecular  genotyping technology, including the low cost, and high   
genetic information to improve the economic traits in  speed and accuracy, it became possible to select for single   
livestock (Budhlakoti et al., 2022). The outcome of these nucleotide polymorphism at the genome scale, which was   

 attempts was the marker-assisted selection (MAS)  termed genomic selection (GS) (Meuwissen et al., 2001). 
 

 (Fernando and Grossman, 1989) which is an indirect  In GS, a revolutionary advance in the world of animal  
 

 selection process, where individuals for a particular trait  breeding, the individual effect of each marker is estimated,  
 

 of interest are selected based on the known markers  and by summing all the marker effects,  the genomic  
 

 linked to the trait (Dekkers, 2004), however, MAS  estimated breeding value (GEBV) of each individual is  
 

 resulted in small increases in genetic improvement  estimated (Meuwissen et al., 2001). There are certain  
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factors such as the size of the reference population, 
genetic diversity in the reference population, heritability 
of the trait, influence of genotype by environment (G×E) 
interaction, density of markers, and genetic relationship 
between reference and breeding populations, which can 
influence the accuracy of the genomic prediction 
(Budhlakoti et al., 2022). Besides these factors, the 
model of genomic selection can also affect the accuracy 
of GS (Howard et al., 2014; Ashoori et al., 2021). The 
choice of model is an essential factor in implementing 
GS, where several parametric and non-parametric 
models can be used for this purpose (Budhlakoti et al., 
2022). Decision-tree based methods, subclass of 
machine learning approach, are able to model both the 
additive and epistatic effects for genomic selection 
(Legarra and Reverter, 2018), including the Regression 
tree (RT), Random Forest (RF) and Boosting (Howard et 
al., 2014; Ashoori et al., 2021; Ahmadi et al., 2021). 
Another method that is in the same family as RF is the 
Bagging. Bagging, an abbreviation for Bootstrap 
Aggregating, is a machine learning ensemble strategy 
for enhancing the reliability and precision of the 
predictive models (Hastie et al., 2009). Bagging is a kind 
of regular ensemble classifier technique in which several 
predictors are made independently and combined using 
some model averaging methods such as weighted 
average or majority vote (Jafarzadeh et al., 2021). 
Although, RF and Boosting have been widely used for 
genomic selection (Oguto et al., 2011; Howard et al., 
2014; Ashoori et al., 2021), little efforts have been made 
to implement Bagging in the context of genomic 
selection in livestock. Gianola et al. (2014) combined 
Bagging and GBLUP (BagBLUP) for estimating the 
marker effects and reported that bagging can ameliorate 
the predictive performance of GBLUP and make it more 
robust against overfitting. Accordingly, Sahebalam et al. 
(2022) compared BagBLUP with GBLUP and Bayesian 
LASSO and reported that when the data are stable, the 
parametric methods (GBLUP and Bayesian LASSO) 
provided higher prediction accuracy compared to 
BagBLUP. In this study, we compare the predictive 
performance of Bagging implemented in the ipred 
package (Peters et al., 2023) with other decision tree-
based methods. 

 
Materials and methods 
 

Data simulation  
 
Using the package hypred (Technow, 2013) in R (R 
Development Core Team, 2023), the genome and 
population were simulated. At first, a base population 
including 50 males and 50 females was simulated and 
by using random mating for 50 generations, the LD 
between the marker and QTL was established. LD was 
calculated using the r2 statistic of Hill and Robertson 
(1968) as follows: 

r² = D2/freq(A1) ∗ freq(A2) ∗ freq(B1) ∗ freq(B2) 
 

 
 
freq (A1) is the frequency of A1 allele in the population 
likewise for other alleles in the population. D is the 
deviation of parental genotypes from the recombinant 
genotypes and estimated using the haplotype 
frequencies as follows: 

D=freq(A₁-B₁)*freq(A₂-B₂)-freq(A₁-B₂)*freq(A₂-B₁) 
In the generation 51, the size of the population 

increased to 1000 individual and labeled as the 
reference population for which the genotypic and 
phenotypic information were available. Subsequently, 
the breeding population was generated from the 
reference population. Animals in the breeding population 
only had genotypic information by which their genomic 
breeding values had to be estimated.  

The simulated genome included ten chromosomes 
on which 10,000 single nucleotide polymorphisms (SNP) 
were evenly distributed. Minor allele frequency was set 
to 0.05 (Table 1). QTL effects were sampled from a 
gamma distribution with shape and scale parameters of 
0.4 and 1.66, respectively, and assigned to 10% of the 
polymorphic SNPs (Meuwissen et al., 2001). Using 
prediction equations, the effects of all SNPs were 
estimated in the reference population by combining the 
genotypic and phenotypic information of all individuals. 
Then, the genomic breeding values of the selection 
candidates were estimated by summing the effects of all 
SNPs they carry according to SNPs effects previously 
estimated in the reference population.  

 
Table 1. Parameters used for simulation program 

Genome size 1,000 cM 
Number of chromosomes 10 
Number of SNP marker  10,000 
Distribution of additive QTL effects Gamma 
Number of QTL 1,000 (10% of SNP) 
Effective population size (Ne) 100 
Heritability 0.10, 0.30, 0.50 
Minor allele frequency (MAF) 0.05 

 

Methods of genomic prediction 
 
Regression tree 
When the trait follows a continuous distribution (e.g., 
daily milk production), regression tree (RT) is used. Let 
y (n×1) be the vector observations, and X = {xi}, where 
xi is a (p×1) vector representing the genotype of each 
animal for p SNP. The RT model can be represented as 
follows: 

𝛹(𝒚, 𝑿) 
The RT is constructed as follows: 1) different samples 

from the training data set, i.e., {(x1, y1), . . . , (xn, yn)}, 
are drawn with replacement, 2) a small group of SNP are 
randomly selected from the p SNP marker and the SNP 
j which minimizes the lose function is selected, 3) 
according to the genotype of SNP j, the node is split in 
two child nodes and individuals go to one of the child 
nodes according to the SNP alleles they carry, 4) steps 
2-3 are repeated until a minimum node size is reached 
and a l l  the terminal nodes become maximally 
homogeneous. The predicted value of the genotype xi  
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for regression problems is the average phenotype of the 
individuals in the node (Gonzalez-Recio and Forni, 
2011). The package rpart (Therneau et al., 2019) was 
used to run RT. 
 
Bagging and Random Forest  
Both Bagging and RF regression use an ensemble of 
regression trees, grown on bootstrap samples of the 
observations using a random subset of predictors to 
define the best split at each node. The prediction for a 

new observation  𝑥(𝑓𝑟𝑓
𝐵 (𝑥)) , is computed by averaging 

the predictions over B trees,  {𝑇(𝑥, 𝛹𝑏)}1
𝐵 , in which 𝛹𝑏 

characterizes the bth tree in terms of split variables, cut 
points at each node, and terminal node values. Bagging 
and RF were fitted using the following model (Ogutu et 
al., 2011):  

𝑓𝑟𝑓
𝐵 (𝑥) =

1

𝐵
∑ 𝑇(𝑥, 𝛹𝑏

𝐵

𝑏=1

), 

The fundamental difference between Bagging and 
RF is that in RF, only a subset of features is selected at 
random out of the total and the best split feature from the 
subset is used to split each node in a tree, but in Bagging 
all features are considered for splitting a node. RF has 
tree important parameters: the number of trees to grow 
(ntree), the number of SNPs randomly selected at each 
tree node (mtry), and the minimum size of terminal nodes 
of trees, below which no split is attempted (nodesize). An 
optimum combination of these parameters should be 
used while running RF. The combination that provided 
the highest accuracy [ntree =1500, mtry = 500 and 
nodesize =25] was used to analyze the data in each 
scenario. The package randomForest (Liaw and Wiener, 
2018) was used to run RF. Important parameters in 
Bagging are nbag which is used to control the number of 
decision trees voting in the ensemble and complexity 
parameter (cp) which is used to control the size of the 
decision tree and to select the optimal tree size. Bagging 
was run with different combinations of these parameters, 
and the combination which provided the highest 
accuracy was: nbag =1000 and cp =500. This 
combination was used to analyze the data in each 
scenario. Bagging was fitted to the data using the ipred 
package (Peters et al., 2023). 

  
Boosting  
Boosting belongs to a family of machine learning 
algorithms that convert the weak learners to strong 
learner. Here, regression trees were the weak learners. 
The Boosting adds regression trees to the residual 
(misclassified inputs) of the previous regression tree in 
such a way that by adding the new trees, the error 
function is decreased (Hastie et al., 2009; Oguto et al., 
2011): 

𝑓(𝑥) = ∑ 𝛽𝑚𝑏(𝑥; 𝛾𝑚)

𝑀

𝑚=1

 

where, 𝛽𝑚, m=1,2,.., M are basis expansion coefficient, 
and 𝑏(𝑥; 𝛾𝑚)  are simple functions of the multivariate 

argument, with a set of parameters 𝛾 = (𝛾1,𝛾2, … , 𝛾𝑀).  

Bagging algorithm for genomic selection  

Prediction is accomplished by weighting the ensemble 
outputs of all regression trees. Boosting was carried out 
using the package gbm (Greenwell et al., 2019). The 
tuning parameters in Boosting were the number of trees 
(ntree), tree depth or tree complexity (tc) and shrinkage 
rate or learning rate (lr). A series of values for each 
parameter was specified and the performance of the 
model with each combination of the tuning parameters 
was evaluated. In the model with highest predictive 
performance, these tuning parameters were: ntree = 
1500, tc = 7 and lr = 0.02.  
 

Comparison of methods  
 
Prediction accuracy: This criterion was calculated as the 
Pearson's correlation between the predicted and true 
(simulated) breeding values (Legarra and Reverter, 
2018): 

Pearson′s correlation =
𝑐𝑜𝑣(𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒𝑠, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠)

𝑣𝑎𝑟(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠)𝑣𝑎𝑟(𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒𝑠)
 

Bias: This criterion was calculated as the difference 
between the average predicted breeding values and true 
breeding values (Legarra and Reverter, 2018): 

𝐵𝑖𝑎𝑠 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 − 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
Reliability: Is the regression of predicted breeding values 
on true breeding values (Legarra and Reverter, 2018): 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑐𝑜𝑣(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠, 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒𝑠)

𝑣𝑎𝑟(𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒𝑠)
 

The prediction model was analyzed ten times and the 
average computing time, memory requirement, 
accuracy, bias and reliability for each scenario was 
presented using a combination of heritability values 
(0.10, 0.30, 0.50). 
 

Memory requirement and computing time  
 
The package pryr (Wickham, 2018) was used to record 
the memory usage for each method.  It records the 
amount of memory occupied by the objects created by 
executing a function in R. The computing time in each 
scenario was monitored and recorded with an R function. 
The computing time was measured as the time 
consumed for executing the codes of the methods 
studied, and did not include the time consumed for the 
simulation of population and genome. 
 

Results 

 
Figure 1 shows the prediction accuracy of the RT, 
Bagging, RF and Boosting at different levels of 
heritability (0.10, 0.30 and 0.50). By increasing the 
heritability from 0.10 to 0.50, prediction accuracy 
increased between 57% (Bagging) to 158% (RT); the 
lowest accuracy of prediction was attributed to RT. RF 
was superior to all other methods especially at lower 
levels of heritability and, therefore, ranked as the first. 
The accuracy of Bagging was equal to RF. At heritability 
0.10, Bagging was superior to Boosting with a significant 
difference. At the heritability of 0.50, the differences 
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between Boosting with RF and Bagging was not 
significant (P>0.05). 

 
 
  

Figure 1. Accuracy of the studied methods in different scenarios of heritability 

The bias of predicted GEBVs for different methods is 
shown in Figure 2. With increase in heritability from 0.10 
to 0.50, the prediction bias decreased in a range from 
32% (RF) to 35% (RT). RT and RF provided GBVs with 
maximum and minimum bias, respectively. The 
differences were more obvious at heritability=0.10, in 
which, the bias of RF was 3%, 20% and 73% smaller 
than Bagging, Boosting and RT, respectively. The 
difference between Bagging and Boosting was 
significant at all heritability levels, and accordingly, 
Bagging was ranked as the second.  

 
Figure 3 shows the reliability of predicted GEBVs for 

different methods. There were 32% (RF) to 61% (RT) 
increases in reliability with increases in heritability values 
from 0.10 to 0.50. Regarding the reliability, the 
predictions of RF and Bagging showed significantly 
(P<0.05) higher reliability than Boosting and RT and, 
therefore both of which were ranked as the first. RT 
provided GEBVs with the lowest reliability and, therefore, 
was ranked as the last one. 

 

Figure 2. Bias of the studied methods in different scenarios of heritability 

Figure 3. Reliability of the studied methods in different scenarios of heritability 
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The computing time for different methods is shown in 
Figure 4. The RT (0.81 minute) was the fastest method 
and Boosting (15.12 minutes) was the slowest one. 
Concerning the memory requirement, RT, RF, Bagging  

Bagging algorithm for genomic selection  

and Boosting ranked as the first, second, third and last 
fastest method. The memory requirement of the studied 
traits (Figure 5) ranged from 0.09 GB (RT) to 3.24 GB 
(Boosting) (Figure 5). 

 

Figure 4. Computing time of the studied methods 

 

Figure 5. Memory requirement of the studied methods 

 

Discussion 
 
The effect of heritability on the accuracy of genomic 
evaluation has been studied by several authors including 
Hayes et al. (2010), Mohammadi Chamachar et al. 
(2015), Zhang et al. (2017), Ahmadi et al. (2021) and 
Ashoori-Banaei et al. (2021). A common finding of these 
studies is that by increasing the heritability, the accuracy 
and reliability of GEBVs increased and the bias of 
GEBVs decreased. For example, Hayes et al. (2010) 
reported that at heritability levels of 0.10, 0.30, 0.50, 0.70 
and 0.90, the accuracy of genomic evaluation was 0.35, 
0.50, 0.60, 0.65 and 0.72, respectively. By increasing the 
heritability, the effect of environmental noises on the 
phenotypic variation decreased (Ahmadi et al., 2021). 
Therefore, most of the phenotypic variation is caused by 
the genetic variation. In such a situation, the power of 
models to extract SNPs effects increases leading to 
increased accuracy (Ahmadi et al., 2021; Ashoori-
Banaei et al., 2021).  

The accuracy of prediction, the speed of calculations 
and the amount of RAM required are the factors that 
affect the overall performance of genomic prediction 
method (Ashoori-Banaei et al., 2021). The current 
findings showed that fitting a regression tree on the data 
did not provide GEBVs with acceptable accuracy, bias 
and reliability. Therefore, it could not be recommended 
for genomic selection. Complexity, instability and 
unwieldy are disadvantages of RT. While decision trees 
are simple and interpretable models for regression and 
classification, they suffer from high bias and high 
variance which makes them less useful for most practical 
applications (Ashoori et al., 2021). Hastie et al. (2009) 
emphasized that the decision trees’ low predictive 
accuracy can be improved by the use of their 
refinements methods such as Bagging, RF and 
Boosting. These strategies combine multiple RT to 
reduce the variability and build more accurate prediction 
models; for example, Bagging reduces the variance 
observed in decision trees, RF improves accuracy by 
avoiding high tree correlation, and Boosting reduces the  
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error by building trees sequentially using information 
from previously built trees (Valiati Barreto et al., 2024). 
Our findings showed that Bagging could provide GEBVs 
with accuracy, bias and reliability equal to RF and higher 
than Boosting and RT. For economic traits in livestock, 
Bagging has not been compared with other genomic 
selection methods in terms of predictive performance, 
computing time and memory requirement. However, in 
maize, Valiati Barreto et al. (2024) used RF, Bagging and 
Boosting for genomic evaluation of grain yield and 
flowering time and reported that Bagging and RF 
produced very similar predictions with is in agreement 
with our findings. Also, de Sousa et al. (2020) compared 
regression-tree based models (RT, RF, Bagging and 
Boosting) for genomic selection of leaf rust resistance to 
Arabica coffee and reported that Bagging presented 
higher accuracy and lower apparent error rate compared 
to other methods studied. According to James et al. 
(2013), the advantage of Bagging over RF depends on 
the number of correlated predictor variables (SNPs) in 
the dataset. If there are many correlated predictor 
variables, RF will be superior to Bagging. Otherwise, RF 
does not result in improvement compared to Bagging. In 
addition, de Sousa et al. (2020) reported that since rust 
resistance is an oligogenic trait, the framework of RF, 
whereby the division of the nodes in the RT is performed 
using a small random number of markers, it is possible 
that certain nodes could have only chosen the markers 
that were not associated with the trait, thus explaining 
the lower performance of RF compared with Bagging. 
Our simulated scenarios were purely additive. Therefore, 
the high percentage of agreement between the RF and 
Bagging could indicate that the simulated trait does not 
present complicating factors for modeling such as the 
dominance, epistasis and imprinting to reveal the latent 
abilities of these methods in complex modeling of 
different genetic effects. As a result, it is the genetic 
architecture of the traits which determines the winner of 
the competition.  

The GBLUP equipped with Bagging, i.e., BagBLUP 
has been tested for genomic selection both with 
empirical and simulated data. Gianola et al. (2014) 
reported that bagging can ameliorate the predictive 
performance of GBLUP and make it more robust against 
over-fitting. Abdollahi-Arpanahi (2015) used BagBlup for 
genomic selection of broiler chicken traits and reported 
that Bagging did reduce the variability of GBLUP 
predictions and enhanced the predictive performance 
when the model was ‘under-regularized’. Sahebalam et 
al. (2022) compared BagBlup, GBLUP and Bayesian 
LASSO and reported no significant difference between 
methods in terms of the accuracy of prediction.  

The methods with higher memory requirement 
(Figures 4 and 5) also needed longer time to finish the 
same job. When comparing the computational cost of 
the techniques to Bagging, only the Boosting required 
more computational time and memory (being 1.70 times 
slower and needed 2.90 times more memory to finish  
 

 
 
the same analysis) inconsistence with de Sousa et al. 
(2020). It could be a limitation for Bagging especially  
where large genomic datasets are used for genomic 
selection. 

Conclusion 

Bagging showed a decent performance in terms of the 
prediction accuracy, computing time and memory 
requirement. Regarding the predictive performance, 
Bagging presented equal outcome compared with RF. 
However, computational costs of Bagging were 
noticeably higher than RF which can limit the overall 
performance of this method, especially when analysis 
includes big dataset. Because, according to previous 
reports, the superiority of RF over Bagging varies with 
the size and structure of the genomic data, it is 
reasonable to apply both models and use the results of 
the better model. Based on the predictive performance 
and computational costs, the RT and Boosting recorded 
poor performance compared to RF and Bagging and, 
therefore, may not be recommended for genomic 
selection. 
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