Abdelwahab, O., Awad, N., Elserafy, M., Badr, E.A., 2022. Feature selection-based framework to identify biomarkers for cancer diagnosis: A focus on lung adenocarcinoma. PLoS ONE 17, e0269126.
Alabdulqader, E.A., Alarfaj, A.A., Umer, M., Eshmawi, A., Alsubai, S., Kim, T., Ashraf, I., 2024. Improving prediction of blood cancer using leukemia microarray gene data and chi2 features with weighted convolutional neural network. Scientific Reports 14, 15625.
Awad, M.A., Dalal, D., Cho, E., 2006. DSG2 mutations contribute to arrhythmogenic right ventricular dysplasia/cardiomyopathy. The American Journal of Human Genetics 79, 136-142.
Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer, New York, USA.
Clough, E., Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Sherman, P.M., 2024. NCBI GEO: archive for gene expression and epigenomics data sets: 23-year update. Nucleic Acid Research 52, 138-144.
DesCôteaux, L., Harvey, D., Girard, C., 1989. Tumeur des cellules de la granulosa chez une taure: observations cliniques, endocrinologiques et post-mortem. Canadian Veterinary Journal 30, 501-503.
Díaz-Uriarte, R., De Andres, S.A., 2006. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7, 3.
ElAraby, I.E., Saleh, A.A., Zaghlol, A.W., Hussien, N., 2024. Bioinformatics study of the microarray data set of ovarian carcinoma in cattle. Zagazig Veterinary Journal 52, 367-379.
Gupta, S., Gupta, M.K., 2021. A comparative analysis of deep learning approaches for predicting breast cancer survivability. Archives of Computational Methods in Engineering 29, 2959-2975.
Gupta, S., Gupta, M.K., Shabaz, M., Sharma, A., 2022. Deep learning techniques for cancer classification using microarray gene expression data. Frontiers in Physiology 13, 952709.
Hastie, T.J., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning. 2nd Ed. Springer, New York, USA.
Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Simonovic, M., 2009. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acid Research 37, 412-416.
Jiang, H., Deng, Y., Chen, H.S., Tao, L., Sha, Q., Chen, J., Tsai, C.J., Zhang, S., 2004. Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. BMC Bioinformatics 5, 81.
Govindarajan, R., Duraiyan, J., Kaliyappan, K., Palanisamy, M., 2012. Microarray and its applications. Journal of Pharmacy and Bioallied Sciences 4, S310-2.
Lasser, J., Matzhold, C., Egger-Danner, C., Fuerst-Waltl, B., Steininger, F., Wittek, T., 2021. Integrating diverse data sources to predict disease risk in dairy cattle-a machine learning approach. Journal of Animal Science 99, 1-14.
Magana, J., Gavojdian, D., Menahem, Y., Lazebnik, T., Zamansky, A., dams-Progar, A., 2023. Machine learning approaches to predict and detect early-onset of digital dermatitis in dairy cows using sensor data. Frontiers in Veterinary Science 10, 1295430.
Mahendran, N., Durai Raj Vincent, P.M., Srinivasan, K., Chang, C.Y., 2020. Machine learning based computational gene selection models: A survey, performance evaluation, open issues, and future research directions. Frontiers in Genetics 11, 603808.
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, K., 2024. Misc functions of the department of statistics (e1071), TU Wien. Available at
http://cran.r-project.org/web/packages/e1071/index.html.
Nagra, A.A., Khan, A.H., Abubakar, M., Faheem, M., Rasool, A., Masood, K., Hussain, M., 2024. A gene selection algorithm for microarray cancer classification using an improved particle swarm Optimization. Scientific Reports 14, 9613.
Nikonova, A.S., Astsaturov, I., Serebriiskii, I.G., Dunbrack, R.L., Golemis, E.A., 2013. Aurora A kinase (AURKA) in normal and pathological cell division. Cell and Molecular Life Science 70, 661-687.
Nilsson, N.J., 1998. Introduction to machine learning. Stanford University. Stanford, USA.
Parrot, J.A., Kim., G., Skinner, K., 2000. Expression and action of kit ligand/stem cell factor in normal human and bovine ovarian surface epithelium and ovarian cancer. Biology Reports 62, 1600-1609.
Ram, M., Najafi, A., Shakeri, M.T., 2017. Classification and biomarker genes selection for cancer gene expression data using random forest. Iranian Journal of Pathology 12, 339-347.
Rashidi, S., Asadi, A., Abdolmaleki, A., 2021. Cancer stem cells: a narrative review. Journal of Rafsanjan University of Medical Science 20, 226.
R development Core Team., 2024. R: A language and environment for statistical computing. Vienna, Austria. Available at:
https://www.R-project.org/.
Reid, B.M., Permuth, J.B., Sellers TA., 2017. Epidemiology of ovarian cancer: a review. Cancer Biology and Medicine14, 9-32.
Rezaee, K., Jeon, G., Khosravi, M.R., Attar, H.H., Sabzevari, A., 2022. Deep learning-based microarray cancer classification and ensemble gene selection approach. IET System Biology 16, 120-131.
Ritchie, M.E., Phipson, B., Wu, D., 2015. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43, e47.
Roudbari, Z., Mokhtari, M., Ebrahimpour Gorji, A., Sadkowski, T., Sadr, A.S., Shirali, M., 2014. Identification of hub genes and target miRNAs crucial for milk production in Holstein Friesian dairy cattle. Genes 14, 2015.
Rupapara, V., Rustam, A., Amaar, P.B., Washington, E.L., Ashraf, I., 2021. Deepfake tweets classification using stacked bi-LSTM and words embedding. Peer Journal of Computer Science 7, e745.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J. T., Ramage, D., Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13, 2498-2504.
Saarinen, S., Vahteristo, P., Lehtonen, R., Aittomaki, K., Launonen, V., Kiviluoto, T., Aaltonen L.A., 2012. Analysis of a Finnish family confirms RHBDF2 mutations as the underlying factor in Tylosis with esophageal cancer. Familial Cancer 11, 525-528.
Simes, R.J., 1985. Treatment selection for cancer patients: application of statistical decision theory to the treatment of advanced ovarian cancer. Journal of Chronic Diseases 38, 171-86.
Tarawneh, O., Otair, M., Husni, M., Abuaddous, H.Y., Tarawneh, M., Almomani, M.A., 2022. Breast cancer classification using decision tree algorithms. International Journal of Advanced Science and Computer 13, 676.680.
Turner, K.J., Crew, J.P., Wykoff, C.C., Watson, P.H., Poulsom, R., Pastorek, J., Ratcliffe, P.J., Cranston, D., Harris, A.L., 2002. The hypoxia-inducible genes VEGF and CA9 are differentially regulated in superficial vs invasive bladder cancer. British Journal of Cancer 86, 1276-1282.
Wang, B., Chen, D., Hua, H., 2021. TBC1D3 family is a prognostic biomarker and correlates with immune infiltration in kidney renal clear cell carcinoma. Molecular Oncology 22, 528-538.
Wang, L., Sun, L., Sun, H., Xing, Y., Zhou, S., An, G., 2023. eGPR65 as a potential immune checkpoint regulates the immune microenvironment according to pan-cancer analysis. Heliyon 9, e13617.
Zhang, G., Chen, Z., Wang, Y., Huang, A., Nie, F., Gao, L., 2024. Up-regulated DSG2 promotes tumor growth and reduces immune infiltration in cervical cancer. Pathology-Research and Practical 262, 15555.
Zeng, Y., Zhang, X., Li, F., Wang., Y., Wei, M., 2022. AFF3 is a novel prognostic biomarker and a potential target for immunotherapy in gastric cancer. Journal of Clinical Laboratory Analysis 36, e24437.