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Abstract In the present study, 7,089 test-day records on milk somatic cell counts 

(SCC) belonging to 2,432 first-parity Murciana-Granadina does in Kerman 
province were used. Test-day SCC records were transformed into milk somatic 
cell scores (SCS) and analyzed by applying random regression models (RRM) 
with the Legendre polynomials (LEG) function with order of 2 to 5 for additive 
genetic and permanent environmental effects and heterogeneous residual 
variances. The models were compared using the Akaike's information (AIC) and 
Bayesian information (BIC) criteria. The model with orders 3 and 2 for additive 
genetic and permanent environmental effects (RRM-LEG32), respectively, was 

the best for genetic analysis of test-day SCS. The estimates of heritability (ℎ2) 

and the ratio of permanent environmental variance to phenotypic variance (𝑝𝑒2) 
for test-day SCS using the RRM-LEG32 were low. They ranged from 0.03 at days 

in milk (DIM) 155 and 215 to 0.11 at DIM 35 for ℎ2 and from 0.01 at DIM 65 to 

0.14 at DIM 275 for 𝑝𝑒2 estimates. Genetic correlation estimates among test-day 
SCS at 5, 70, 137, 203, and 275 DIM were lower than the corresponding 
phenotypic correlations. Genetic correlation estimates ranged from 0.36 between 
DIM 137 and DIM 275 to 0.97 between DIM 70 and DIM 137 while the phenotypic 
correlations ranged from 0.03 between DIM 70 and DIM 203 to 0.09 between DIM 
5 and DIM 203. In general, the strongest genetic correlations were found between 
closely located DIMs, with these correlations decreasing as the interval between 
DIMs increased. The low heritability estimates for test-day SCS records implied 
that they are mainly controlled by the non-additive genetic and environmental 
effects, limiting the efficiency of direct genetic selection for improving the test-day 
SCS. Therefore, including these effects in designing an appropriate breeding 
program for improvement in Murciano-Granadina goat udder health is of great 
importance. 

Keywords: animal model, genetic parameters, Legendre polynomials, somatic 
cell count, test-day record 

Introduction 
due to several reasons, including the genetic potential of the   

In most developing countries, goats play an important role  native breeds (Jembere et al., 2017). Genetic and non-  
in the economy and livelihoods of nomadic farmers  genetic factors significantly influence milk yield and quality   
(Peacock, 2005). However, goat productivity is often low  in goats (Selvaggi and Dario, 2015). Knowledge of the  
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genetic and phenotypic aspects of milk production traits 
is essential for developing efficient breeding programs 
(Scholtens et al., 2019). 

Milk somatic cell count (SCC) is a reliable indicator 
for early diagnosis of udder disease and health status of 
mammary glands (Shook and Schutz, 1994; 
Olechnowicz and Jaskowski, 2012). SCC mainly reflects 
the number of neutrophils that migrate from blood to the 
mammary gland in response to infections (Rupp et al., 
2011); therefore, a high SCC often implies mastitis, being 
the most costly disease in dairy goats and the most 
frequent cause of culling for sanitary reasons (Marogna 
et al., 2012). Detecting mastitis early through SCC can 
help in managing and treating the condition, thereby 
improving the animal welfare and milk quality 
(Podhorecka et al., 2021; Smistad et al., 2024). High 
SCC levels can lead to changes in milk composition, 
such as increased protein and casein levels, which affect 
milk taste and processing properties (Rychtarova et al., 
2023). Furthermore, maintaining a low SCC is 
economically beneficial for dairy farmers. Reduced milk 
yield and quality due to high SCC results in lower milk 
price and potential penalties from milk processors 
(Rychtarova et al., 2023). High SCC can also be due to 
the presence of pathogens, which can pose health risks 
to consumers (Slyzius et al., 2023). By regularly 
monitoring SCC, dairy goat farmers can ensure the 
health of animals, quality of milk, and economic viability 
of their operations. 

Random regression models (RRMs) have several 
advantages in genetic evaluations of livestock, 
particularly when analyzing longitudinal data such as 
milk production traits (Oliveira et al., 2019). These 
models can accommodate the changing nature of traits 
over time by fitting random genetic and environmental 
effects. By accounting for time-course changes in 
environmental effects and additive genetic values, 
RRMs provide higher accuracy in estimating genetic 
parameters compared to traditional models (Oliveira et 
al., 2019). This is particularly useful for traits that vary 
significantly with age or stage of lactation (Arnal et al., 
2019). Arnal et al. (2019) pointed out that, RRMs are 
well-suited for analyzing test-day records in dairy goats, 
as they can model the variability of environmental effects 
throughout lactation more accurately than fixed lactation 
curve models. Furthermore, RRMs can manage complex 
data structures, including repeated measures and 
unbalanced data, making them ideal for genetic 
evaluations where data may not be uniformly collected 
(Silva et al., 2013). These advantages make RRMs a 
powerful tool in the genetic evaluation and selection of 
livestock for traits with longitudinal data such as SCC, 
ultimately contributing to more efficient and effective 
breeding programs. Orthogonal Legendre polynomials 
are powerful tools used in RRMs for the genetic 
evaluation of animals and help in reducing 
multicollinearity issues in the model, leading to more 
stable and reliable estimates (Li et al., 2020). They can 
model complex, nonlinear relationships between traits  

 

and time or age, which is crucial for accurately capturing 
the genetic and environmental effects over an animal’s 
lifespan (Li et al., 2020). Furthermore, the mathematical 
formulation of Legendre polynomials is relatively 
straightforward, making them easier to implement and 
interpret in genetic evaluation models (Li et al., 2020).  

Estimating genetic parameters for test-day somatic 
cell scores (SCS) in dairy goats using RRMs is a crucial 
aspect of improving udder health and overall milk quality 
in breeding programs. There are limited published 
estimates on the genetic parameters of SCS in dairy goat 
breeds. Jimenez-Granado et al. (2022) reported 
estimates of genetic parameters for SCS in Florida goats 
using both single and multiple traits models. They found 
medium to high heritability estimates for SCS, ranging 
from 0.245 (in the first parity) to 0.365 (in the third parity), 
indicating potential for genetic improvement of this trait 
in the studied population. 

The Murciano-Granadina goat breed is one of the 
most important dairy goat breeds in Spain and is 
distributed extensively in various countries (Miranda-
Alejo et al., 2019). In 2015, the private sector imported 
the Murciano-Granadina goat breed from Spain to the 
southern region of Iran, with tropical climatic conditions. 
This initiative aimed to enhance production efficiency in 
the native and nomadic goat flocks of the region, 
primarily maintained under a low-input, low-output 
production system. The goal was to improve the 
livelihoods of rural flock holders in the area. To achieve 
this, purebred Murciano-Granadina does and bucks 
were either distributed to local flocks or used for 
crossbreeding with indigenous goat breeds. The 
Murciano-Granadina goat breed is highly valued for its 
milk production and adaptability. Understanding the 
genetic parameters for test-day SCC is essential as it 
serves as an indicator of udder health and milk quality. 
There is no information on the genetic parameters for 
test-day SCC in this population of the Murciano-
Granadina goat breed. Therefore, this study aimed to 
estimate the genetic and phenotypic parameters for SCC 
in the first lactation of this population using RRMs. 

 

Materials and methods 

Pedigree, data, and editing protocol 

The pedigree information of 33,858 Murciano-Granadina 
goats originated from 920 sires and 10,769 dams was 
used in the present study. The CFC program (Sargolzaei 
et al., 2006) was employed to monitor pedigree errors 
and prepare the pedigree for genetic analysis. The 
pedigree structure of the population is presented in Table 
1. Among the registered animals, those with both parents 
known, both parents unknown, and one parent known 
comprised 89.23%, 9.91%, and 0.86 % of all individuals, 
respectively. Only 34.52 % of the animals had progeny. 

The original dataset, comprised of 7,745 test-day 
SCC from 2616 first-parity does, had been collected from 
2017 to 2024 at a private dairy farm located in Ghale-
Ganj city, in the southern region of Kerman province,  
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Iran. Test-day records of SCC were limited to does for 
which measurements were taken between 5 to 275 days 
in milk, with consecutive sampling intervals of 
approximately 30 days. The final dataset included 7,089 
test-day records of milk SCC from 2,432 first-parity does. 
The values of SCC were right-skewed, therefore, to 
achieve normally distributed values, the SCC values 
were transformed into SCS values using the following 
transformation (Valencia-Posadas et al., 2022): 

𝑆𝐶𝑆 =  𝑙𝑜𝑔2  (
𝑆𝐶𝐶

100000
) + 3 

 
Table 1. Pedigree structure of the population of the Murciano-

Granadina goat breed 
Item n 

Individuals in total 33858 
Inbreds in total 2252 
Sires in total 920 
Dams in total 10769 
Individuals with progeny 11689 
Individuals with no progeny 22169 
Individuals with both parents known 30213 
Individuals with both parents unknown 3358 
Individuals with one parent unknown 287 
Average inbreeding coefficients (percent) 0.3 
Average inbreeding coefficients in the inbreds (percent) 4.3 
Maximum of inbreeding coefficients (percent) 31.25 
Minimum of inbreeding coefficients (percent) 0.10 

 

Statistical analysis 

Random regression models 
The estimation of genetic parameters for test-day SCS 
records was performed applying a single-trait linear 
mixed random regression model as follows: 

𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐖𝐩𝐞 + 𝐞  

where, y is the vector of test-day SCS records; b is 

the vector of fixed effects; 𝐚  and pe are regression 
coefficients related to the additive genetic and 
permanent environmental effects, respectively. The X, Z, 
and W are incidence matrices associated with the fixed, 
additive genetic, and permanent environmental effects to 
y. The vector of e denotes random residual effects. 
Significance testing of the fixed effects and estimation of 
the least squares means for the test-day SCS records 
across the levels of fixed effects were performed by 
using the PROC GLM (SAS, 2010). The Tukey-Kramer 
test was used to compare the mean of test-day SCS 
records across the levels of fixed effects. The fixed 
effects were kidding season (spring, summer, autumn, 
and winter), kidding year (eight levels from 2017 to 
2024), kidding type (single and twin), and age at kidding 
(2- and 3-year-old). It was assumed that: 

𝐸 [

𝐲
𝐚

𝐩𝐞
𝐞

] = [

𝐗𝐛
0
0
0

] , V (𝐚) =  𝐊𝐀 ⊗ 𝐀, V(𝐩𝐞) = 𝐊𝐩𝐞 ⊗ 𝐈, and V(𝐞) = 𝐑 

where, KA and Kpe are the matrices of (co)variance 
between the regression coefficients related to additive 
genetic and permanent environmental effects, 
respectively; A is the numerator relationship matrix, I is 
an identity matrix, and R is the residual covariance 
matrix. 

Random regression model for somatic cell scores in goat  

Random regression models, extensions of the 
repeatability models in which the random genetic animal 
effect can vary for each time period (Lidauer et al., 2003), 
are implemented by applying different covariance 
functions. Covariance functions are used to describe 
covariance among records that are measured at different 
time points (Meyer and Hill, 1997). The Legendre 
polynomials (LEG) and B-spline functions, two important 
covariance functions, are used for fitting RRMs. In the 
present study, the LEG function was used for fitting the 
random regression model on test-day SCS records. The 
following single-trait RRM with LEG function was used 
for the genetic analysis of test-day SCS: 

𝑦𝑖𝑗𝑘 =  𝐹𝐸𝑘 +  ∑ 𝛽𝑚

𝐾𝛽−1

𝑚=0

∅𝑚 (𝑡𝑖𝑗) +  ∑ 𝛼𝑖𝑚

𝐾𝛼−1

𝑚=0

∅𝑚 (𝑡𝑖𝑗) +  ∑ 𝛾𝑖𝑚

𝐾𝛾−1

𝑚=0

∅𝑚 (𝑡𝑖𝑗) + 𝜀𝑖𝑗 

where, 𝑦𝑖𝑗𝑘 is the test-day SCS on the jth days in milk 

(DIM) of the ith goat within fixed effect k; 𝐹𝐸𝑘 is the fixed 

effect; 𝛽𝑚 is the mth regression coefficient of the test-day 
SCS on the LEG function for modeling the average curve 
of the population; 𝛼𝑖𝑚  and 𝛾𝑖𝑚  are the mth regression 
coefficients of the additive genetic and permanent 
environmental effects, respectively, for the ith goat; 𝐾𝛽 , 

𝐾𝛼 , and 𝐾𝛾  are the degree of LEG; 𝑡𝑖𝑗  is the control 

variable, DIM of the ith goat standardized for -1 to 1 
interval, as described by Kirkpatrick et al. (1990); 

∅𝑚 (𝑡𝑖𝑗)  is LEG function for parameter m evaluated at 

DIM 𝑡𝑖𝑗 ; and 𝜀𝑖𝑗  is the residual effect. Different models 

with the combinations of second-to fifth-order 
polynomials were used to model the direct additive 
genetic and permanent environmental variances, 
considering heterogeneous residual variance across 6 
different classes of DIM including 5-45, 46-90, 91-135, 
136-180, 181-225, and 226-275. 

Model comparisons 
The RRMs were compared by applying the Akaike’s 
information criterion (AIC; Akaike, 1974) and Bayesian 
information criterion (BIC; Schwarz, 1978). The AIC and 
BIC values were calculated as follows: 

AIC = -2 log (L) + 2p 
BIC= -2 log (L) + p Log(N-r) 

where, log (L) is the maximized logarithm of 
likelihood, p is the number of parameters, N is the 
number of records, and r is the rank of matrix X as the 
incidence matrix of the fixed effects. The lowest values 
for AIC and BIC indicate the best model. Variance 
components and genetic parameters were estimated by 
applying the WOMBAT program (Meyer, 2013). 
 

Results and discussion 

Descriptive statistics for the test-day SCS records are 
shown in Table 2. High coefficient of variation was 
obtained for test-day SCS. Within a population, a high 
coefficient of variation for a trait shows that there is a 
large amount of variability in the trait relative to the mean. 
This could be due to several factors such as genetic  
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diversity, differences in management practices, and 
environmental conditions. 

Table 2. Descriptive statistics for the test-day SCS in Murciano-

Granadina goats  
Item Value 

No. of records 7089 
No. of animals 2432 
Average number of records per animal 2.91 
Mean (score) 4.86 
Standard deviation (score) 1.92 
Coefficient of variation (%) 39.51 
Minimum (score) 0.16 
Maximum (score) 9.88 

Non-genetic effects 

The least squares means of the test-day SCS of the 
Murciano-Granadina goat across the levels of fixed 
effects are presented in Table 3. The kidding year and 
kidding season significantly affected the test-day SCS 
(P<0.01). The kidding year can influence the test-day 
SCS due to variations in environmental conditions, 
management practices, and herd health status over 
different years. The season of kidding also plays a 
significant role in determining the SCS. Seasonal 
variations affect the nutritional status, environmental 
stressors, and exposure to pathogens, all of which can 
influence the somatic cell count in milk. Zamuner et al. 
(2020) pointed out that Saanen goats kidding in different 
months showed variations in SCS, with certain seasons 
associated with higher or lower SCS. This is likely due to 
differences in temperature, humidity, and feed 
availability, which can affect the immune response and 
overall health of the does (Jimenez-Granado et al., 
2014). The kidding type and kidding age had no 
significant effect on the test-day SCS (P>0.05). Contrary 
to us, Zamuner et al. (2020) reported that single-kidding 
Saanen does had significantly lower test-day SCC than 
multiple births does (5.6 vs. 7.5 × 105 cells/mL of milk). 

Table 3. Least squares means (± S.E.) of the fixed effects for 

test-day SCS in Murciano-Granadina goats 
Effect  Significance and estimates  

Kidding year ** 
Kidding season ** 
Spring 5.24±0.06 a 
Summer 5.20±0.07 a 
Autumn 4.99±0.06 b 
Winter 5.17±0.07 a 
Kidding type ns 
Single 5.20±0.04 a 
Twin 5.11±0.06 a 
Age at kidding ns 
2-yr 5.16±0.05 a 
3-yr 5.15±0.06 a 

a Means with similar letters in each sub-class within a column do not 
differ (P>0.05), ns: not significant. Means with different letters in each 
sub-class within a column differ from another at * P<0.05 and ** 
P<0.01.  

Fitting different order RRM  

The results of fitting different RRMs with LEG function for 
test-day SCS, accounting for heterogeneous residual 
variances, are shown in Table 4; the RRM with degrees  

 

 

of fit 3 and 2 for the additive genetic and permanent 
environmental effects (RRM-LEG32), respectively, had 
the best fit.  

Table 4. Comparison of different random regression models of 

Legendre polynomials function for test-day SCS in Murciano-
Granadina goats 

Model a NP b AIC c BIC c 

LEG22 12 17100.642 17183.022 
LEG23 15 20012.132 20115.106 
LEG24 19 15781.276 15911.710 
LEG25 24 15784.954 15949.712 
LEG32 15 9896.306 9982.480 
LEG33 18 15783.422 15906.990 
LEG34 22 15786.156 15937.184 
LEG35 27 15789.450 15974.802 
LEG42 19 15782.382 15912.814 
LEG43 22 15786.178 15937.206 
LEG44 26 15792.622 15971.108 
LEG45 31 15795.956 16008.768 
LEG52 24 15786.298 15951.056 
LEG53 27 15789.298 15974.650 
LEG54 31 9944.588 10157.400 
LEG55 36 15802.012 16049.148 

a LEGxy: Legendre polynomial function, where, x and y are degrees of 
fit for additive and animal permanent environmental effects, 
respectively. 
b NP: number of parameters 
c AIC: Akaike’s information criterion, BIC: Bayesian information criterion 
The best model is shown in bold text. 

The associated eigenvalues (%) for the covariance 
matrices of random regression coefficients of additive 
genetic and permanent environmental effects obtained 
from the RRM-LEG32 are shown in Table 5. The first 
component accounted for 73.44% of the total additive 
genetic variability, implying that the majority of the 
additive genetic variation in the form of the test-day SCS 
curve is due to the constant random regression 
coefficients. For the permanent environmental effects, 
the largest variation was associated with the constant 
term (93.07%). By applying RRM with the LEG function 
order 5, Soumri et al. (2020) reported that the first 
components (constant term) for additive genetic and 
permanent environmental effects constituted 52% and 
51.7% of the variability of the test-day SCS in Tunisian 
dairy cattle, respectively. As shown in Table 5, the 
second and the third components explained 20.00% and 
6.56% of the total additive genetic variability for the test-
day SCS in the first-parity Murciano-Granadina goats, 
respectively. In the case of permanent environmental 
effects, the second component accounted for 6.56% of 
the total associated variability. Pool et al. (2000) pointed 
out that goodness of fit can be notably reduced when the 
sum of the variability associated with the eigenvalues set 
to zero is larger than 2 %. In our study, to ensure more 
than 98 % of the total variability, three components for 
the additive genetic effects and two components for the 
permanent environmental effects seem to be appropriate 
to attain this level. 

Variance components  

The additive genetic variance under the RRM-LEG32 
ranged from 0.096 (DIM=215) to 0.440 (DIM=5), with a 
decreasing trend from the initial phase of lactation until  
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DIM 155, after which it increased slightly until the end of 
the period (Figure 1). The permanent environmental 
variance under RRM-LEG32 varied from 0.093 
(DIM=35) to 0.514 (DIM=275). It increased from DIM 35 
(0.093) until DIM 185 (0.306) and decreased afterward 
until DIM 245 (0.143) with an increase until DIM 275 
(0.514). As shown in Figure 1, except for the early and 
late stages of the lactation period, similar trends were 
observed for the residual and phenotypic variances of 
the test-day SCS of the first-parity Murciano-Granadina 
goats. Lopez-Romero and Carabano (2003) explained 
that it is reasonable to observe large variances in the 
early and late lactation periods given the exposure of 
animals to multiple factors that have a greater influence  

Random regression model for somatic cell scores in goat  

on production than during the other periods of lactation. 
This behavior has been largely attributed to a poor fit of 
the RRMs at the extreme points (early and late stages) 
of the curve, probably due to the smaller number of 
observations during these periods (Meyer, 1999). 
 
Table 5. Eigenvalues of estimated covariance matrices of 

random regression coefficients for test-day SCS in Murciano-
Granadina goats  

Random effect Eigenvalues 
Component 1 Component 2 Component 3 

Additive genetic 73.44% 20.00% 6.56% 
Permanent 
environmental 

93.07% 6.93% - 

 

Figure 1. Variances obtained for test-day SCS along the first lactation period in the Murciano-Granadina goat breed  

Heritability estimates 

The estimates of heritability ( ℎ2)  and the ratio of 
permanent environmental variance to phenotypic 

variance (𝑝𝑒2 ) for test-day SCS using the RRM-LEG32 
across different DIM in the first lactation period of the 
Murciano-Granadina goat breed are shown in Table 6. In 
general, the corresponding estimates of ℎ2  and 𝑝𝑒2 
were low; ranging from 0.03 (DIM=155 and 215) to 0.11 

(DIM=35) for ℎ2  and from 0.01 (DIM=65) to 0.14 

(DIM=275) for 𝑝𝑒2. As shown in Figure 2, the estimates 

of ℎ2  decreased from early lactation (about after one 
month) until DIM 155 and increased afterward generally 
with some fluctuations. The low estimates of heritability 
for test-day SCS in the Murciano-Granadina goats may 
be explained by the low associated additive genetic and 
high residual variances for the test-day SCS in the 
current study. Soumri et al. (2020) also reported low 
heritability estimates for test-day SCS using RRM with 
LEG function in Tunisian dairy cattle. Arnal et al. (2020) 
used a RRM with LEG function for genetic analysis of 
test-day SCS in the French Alpine goat breed. They used 
order 2 for additive genetic and permanent environment 
effects and reported an average heritability estimate for 
SCS of about 0.15. Jimenez-Granado et al. (2022) 
studied the test-day SCS in the Florida goat breed and  

found that SCS had a medium to high heritability; ranging 
from 0.245 in the first parity to 0.365 in the third parity. 

Table 6. The estimates of heritability (ℎ2)  and the ratio of 

animal permanent environmental variance to phenotypic 

variance (𝑝𝑒2) for test-day SCS in the first lactation period in 

Murciano-Granadina goats 
DIM 1 ℎ2± S.E. 𝑝𝑒2± S.E. 

5 0.10±0.04 0.08±0.04 
35 0.10±0.03 0.03±0.03 
65 0.09±0.03 0.01±0.02 
95 0.08±0.03 0.04±0.03 
125 0.06±0.03 0.04±0.03 
155 0.03±0.02 0.08±0.03 
185 0.05±0.02 0.10±0.05 
215 0.03±0.01 0.05±0.03 
245 0.05±0.02 0.04±0.04 
275 0.04±0.03 0.14±0.08 

1 DIM: days in milk 

Genetic correlation 

The genetic and phenotypic correlations among some 
selected DIMs, including 5, 70, 137, 203, and 275, are 
shown in Table 7. Genetic correlation estimates were 
lower than the corresponding phenotypic correlations. 
Genetic correlation estimates ranged from 0.36 between 
DIM 137 and DIM 275 to 0.97 between DIM 70 and DIM 
137 while the phenotypic correlations ranged from 0.03 
between DIM 70 and DIM 203 to 0.09 between DIM 5  
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and DIM 203. In general, the highest genetic correlations 
were observed between nearby DIMs and decreased as 
DIMs got further apart. A similar trend was also reported 
by Soumri et al. (2020) for genetic correlations among 
test-day SCS in Tunisian dairy cattle. As shown in Table 
7, high genetic correlations, generally higher than 0.80,  

 
among the DIMs of the mid-lactation period (DIMs 70 to 
203) were observed. This result is of great importance 
revealing a possible milk recording simplification during 
some periods of lactation without greatly affecting the 
estimation of the genetic parameters using RMMs 
(Soumri et al., 2020). 
 

Figure 2. The estimates of heritability (ℎ2) and the ratio of permanent environmental variance to phenotypic variance 

(𝑝𝑒2) for test-day SCS during the first lactation period in Murciano-Granadina goats 

Table 7. Estimates of the additive genetic (above diagonal) and phenotypic (below diagonal) correlations among days 

in milk for test-day SCS in Murciano-Granadina goats 
DIM 1 5 70 137 203 275 

5 - 0.76±0.25 0.62±0.27 0.59±0.21 0.55±0.22 
70 0.05±0.03 - 0.97±0.21 0.83±0.25 0.57±0.18 
137 0.04±0.03 0.08±0.02 - 0.87±0.31 0.36±0.24 
203 0.09±0.04 0.03±0.02 0.06±0.02 - 0.59±0.18 
275 0.06±0.01 0.05±0.02 0.08±0.04 0.05±0.04 - 

1 DIM: days in milk 

Conclusion 

Knowledge of the genetic parameters for test-day SCS 
in Murciano-Granadina goats using RRMs provides 
valuable insights into the role of genetic and non-genetic 
effects that are important for the expression of this trait. 
The RRMs offer an appropriate method for analyzing 
test-day SCS across different lactation stages. The low 
heritability estimates for test-day SCS records implied 
that they are mainly controlled by non-additive genetic 
and environmental effects which limit the efficiency of 
direct genetic selection for improving them. Therefore, 
including these effects in designing an appropriate 
breeding program for improving the test-day SCS as a 
measure of udder health in the Murciano-Granadina goat 
breed is of great importance. 
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