Amaral, D.M., James Croom, W., Rakes, A.H., Leonard, E.S., Linnerud, A.C., 1985. Increased concentration of sodium chloride on milk production of cows fed low fiber diets. Journal of Dairy Science 68 (11), 2940-2947.
Benedet, A., Manuelian, C. L., Zidi, A., Penasa, M., De Marchi, M., 2019. Invited review: β-hydroxybutyrate concentration in blood and milk and its associations with cow performance. Animal 13(8), 1676-1689.
Breiman, L., 1996. Bagging predictors. Machine Learning 24(2), 123-140.
Burnham K.P., Anderson, D.R., 2004. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research 33(2), 261-304.
Castañón, M., Vargas-Bello-Pérez, E., Martens, H., 2023. Invited Review: Increasing milk yield and negative energy balance: A gordian knot for dairy cows? Animals (13), 3097-3115.
Cavero, D., Tölle, K.H., Henze, C., Buxadé, C., Krieter, J., 2008. Mastitis detection in dairy cows by application of neural networks. Livestock Science 114(2–3), 280-286.
Coffey, M.P., Emmans, G.C., Brotherstone, S., 2002. Genetic evaluation of dairy bulls for energy balance traits using random regression. Animal Science 74(1), 29-40.
Dechow, C.D., Rogers, G.W., Clay, J.S., 2002. Heritability and correlations among body condition score loss, body condition score, production and reproductive performance. Journal of Dairy Science 85(11), 3062-3070.
De Vries, A., Marcondes, M.I., 2020. Review: Overview of factors affecting productive lifespan of dairy cows. Animal (S1), s155-s164.
Duffield, T.F., Lissemore, K.D., McBride, B.W., Leslie, K.E., 2009. Impact of hyperketonemia in early lactation dairy cows on health and production. Journal of Dairy Science 92(2), 571-580.
Ebrahimie, E., Ebrahimi, F., Ebrahimi, M., Tomlinson, S., Petrovski, K.R., 2018. Hierarchical pattern recognition in milking parameters predicts mastitis prevalence. Computers and Electronics in Agriculture 147, 6-11.
Ebrahimi, Z., Mohammadabadi, M.R., Esmailizadeh, A.K., Khezri, A. Najmi Noori, A., 2015. Association of PIT1 gene with milk fat percentage in Holstein cattle. Iranian Journal of Applied Animal Science 5, 575-582.
Erb, R. E., Ashworth, U.S., 1961. relationships between age, body weight, and yield of dairy cows. Journal of Dairy Science 44(3), 515-523.
Gareth, J., Witten, D., Hastie, T., Tibshirani, R. 2021. An Introduction to Statistical Learning: With Applications in R. 1st Ed. New York, NY. Springer
Ghotbaldini, H., Mohammadabadi, M., Nezamabadi-Pour, H., Babenko, O. I., Bushtruk, M. V., Tkachenko, S. V. 2019. Predicting breeding value of body weight at 6-month age using Artificial Neural Networks in Kermani sheep breed. Acta Scientiarum. Animal Sciences 41(1), e45282.
Giannuzzi, D., Mota, L. F. M., Pegolo, S., Gallo, L., Schiavon, S., Tagliapietra, F., Katz, G., Fainboym, D., Minuti, A., Trevisi, E., Cecchinato, A. 2022. In-line near-infrared analysis of milk coupled with machine learning methods for the daily prediction of blood metabolic profile in dairy cattle. Scientific Reports 12(1), 1-13.
Gianola, D., Okut, H., Weigel, K.A., Rosa, G.J., 2011. Predicting complex quantitative traits with Bayesian neural networks: A case study with Jersey cows and wheat. BMC Medical Genetics 12 87-99.
Grzesiak, W., Błaszczyk, P., Lacroix, R., 2006. Methods of predicting milk yield in dairy cows -Predictive capabilities of Wood’s lactation curve and artificial neural networks (ANNs). Computers and Electronics in Agriculture 54(2), 69-83.
Grzesiak, W., Lacroix, R., Wójcik, J., Blaszczyk, P., 2003. A comparison of neural network and multiple regression predictions for 305-day lactation yield using partial lactation records. Canadian Journal of Animal Science 86(1), 3-10.
Guyon, I.M., André, E., 2003. An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157-1182.
Hamidi, S. P., Mohammadabadi, M. R., Foozi, M. A., Nezamabadi-Pour, H. 2017. Prediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks. Journal of Livestock Science and Technologies 5(2) 53-61.
Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: Data mining, inference, and prediction. 2nd Ed. New York, NY. Springer.
Hu, W., Murphy, M.R., Constable, P.D., Block, E., 2007. Dietary cation-anion difference and dietary protein effects on performance and acid-base status of dairy cows in early lactation. Journal of Dairy Science 90(7), 3355-66.
Hut, P.R., Hostens, M.M., Beijaard, M.J., van Eerdenburg, F.J.C.M., Hulsen, J.H.J.L., Hooijer, G. A., Stassen, E.N., Nielen, M., 2021. Associations between body condition score, locomotion score, and sensor-based time budgets of dairy cattle during the dry period and early lactation. Journal of Dairy Science 104(4), 4746-4763.
Ibeagha-Awemu, E.M., Li, R., Ammah, A.A., Dudemaine, P.L., Bissonnette, N., Benchaar, C., Zhao, X., 2016. Transcriptome adaptation of the bovine mammary gland to diets rich in unsaturated fatty acids shows greater impact of linseed oil over safflower oil on gene expression and metabolic pathways. BMC Genomics 17, 104-127.
Iwaniuk, M. E., Weidman, A. E., & Erdman, R. A. 2015. The effect of dietary cation-anion difference concentration and cation source on milk production and feed efficiency in lactating dairy cows. Journal of Dairy Science 98(3), 1950-1960.
Jansen, H.M., Zschiesche, M., Albers, D., Wemheuer, W., Sharifi, A.R., Hummel, J., 2021. Accuracy of subclinical ketosis detection with rapid test methods for BHBA in blood in commercial dairy farms. Dairy 671-683.
Kamphuis, C., Mollenhorst, H., Heesterbeek, J., Hogeveen, H., 2010. Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction. Journal of Dairy Science 93, 3616-3627.
Kaufman, E.I., LeBlanc, S.J., McBride, B.W., Duffield, T.F., DeVries, T.J., 2016. Association of rumination time with subclinical ketosis in transition dairy cows. Journal of Dairy Science 99(7), 5604-5618.
Khezri, A., Rezayazdi, K., Mesgaran, M.D., Moradi-Sharbabk, M. 2009. Effect of different rumen-degradable carbohydrates on rumen fermentation, nitrogen metabolism and lactation performance of Holstein dairy cows. Asian-Australasian Journal of Animal Sciences 22, 651-658.
Kutner, M.H., Nachtsheim, C. J., Neter, J., Li, W., 2005. Applied Linear Statistical Models. 5th Ed, McGraw-Hill, Irwin, New York.
Lean, I.J., DeGaris, P.J., McNeil, D.M., Block, E., 2006. Hypocalcemia in dairy cows: Meta-analysis and dietary cation- anion difference theory revisited. Journal of Dairy Science 89(2), 669-684.
Lean, I.J., LeBlanc, S.J., Sheedy, D.B., Duffield, T., Santos, J.E.P., Golder, H.M., 2023. Associations of parity with health disorders and blood metabolite concentrations in Holstein cows in different production systems. Journal of Dairy Science 106(1), 500-518.
Lee, M.R.F., Merry, R.J., Davies, D.R., Moorby, J.M., Humphreys, M.O., Theodorou, M.K., MacRae, J.C., Scollan, N.D., 2003. Effect of increasing availability of water-soluble carbohydrates on in vitro rumen fermentation. Animal Feed Science and Technology 104(1-4), 59-70.
Mandujano Reyes, J. F., Walleser, E., Hachenberg, S., Gruber, S., Kammer, M., Baumgartner, C., Mansfeld, R., Anklam, K., Döpfer, D. 2021. Full model selection using regression trees for numeric predictions of biomarkers for metabolic challenges in dairy cows. Preventive Veterinary Medicine 193,105422
Martens, H. 2023. Invited Review: Increasing milk yield and negative energy balance: A Gordian Knot for dairy cows? Animals 13(19), 3097.
McArt, J.A.A., Nydam, D.V., Oetzel, G.R., 2013. Dry period and parturient predictors of early lactation hyperketonemia in dairy cattle. Journal of Dairy Science 96(1), 198-209.
Mekuriaw, Y., 2023. Negative energy balance and its implication on productive and reproductive performance of early lactating dairy cows: review paper. Journal of Applied Animal Research 51(1), 220-229.
Michalski, R.S., Carbonell, J.G., Mitchell, T.M., 2013. Machine learning: An artificial intelligence approach. Artificial Intelligence 25(2), 236-238.
Mohammadabadi, M., Kheyrodin, H., Afanasenko, V., Babenko Ivanivna, O., Klopenko, N., Kalashnyk, O., Ievstafiieva, Y., Buchkovska, V. 2024. The role of artificial intelligence in genomics. Agricultural Biotechnology Journal 16(2), 195-279.
Monshouwer, R. 2020. Detection of subclinical ketosis in dairy cows using behaviour sensor data. M.Sc. Thesis, University of Twente. Netherlands.
NASM, National Academies of Sciences and Medicine., 2021. Nutrient Requirements of Dairy Cattle: 8th Ed. Washington, D.C., USA. The National Academies Press.
Ospina, P.A., McArt, J. A., Overton, T. R., Stokol, T., Nydam, D.V., 2013. Using nonesterified fatty acids and β-hydroxybutyrate concentrations during the transition period for herd-level monitoring of increased risk of disease and decreased reproductive and milking performance. Veterinary Clinics of North America: Food Animal Practice 29(2), 387-412.
Ospina, P.A., Nydam, D.V., Stokol, T., Overton, T.R., 2010. Association between the proportion of sampled transition cows with increased non-esterified fatty acids and β-hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level. Journal of Dairy Science 93(8), 3595-3601.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825-2830.
Poczynek, M., Nogueira, L.S., Carrari, I.F., Carneiro, J.H., Almeida, R., 2023. Associations of body condition score at calving, parity, and calving season on the performance of dairy cows and their offspring. Animals 13(4), 596-604.
Ravelo, A.D., Vyas, D., Ferraretto, L.F., Faciola, A., 2022. Effects of sucrose and lactose as partial replacement to corn in lactating dairy cow diets: a review. Translational Animal Science 6(2).1-8.
Richards, B.F., Janovick, N.A., Moyes, K.M., Beever, D. E., Drackley, J.K., 2020. Comparison of prepartum low-energy or high-energy diets with a 2-diet far-off and close-up strategy for multiparous and primiparous cows. Journal of Dairy Science 103(10), 9067-9080.
Roche, J.R., Friggens, N.C., Kay, J.K., Fisher, M.W., Stafford, K.J., Berry, D.P., 2009. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. Journal of Dairy Science 92(12), 5769-5801.
Roche, J.R., Meier, S., Heiser, A., Mitchell, M.D., Walker, C.G., Crookenden, M.A., Riboni, M. V., Loor, J.J., Kay, J.K., 2015. Effects of precalving body condition score and prepartum feeding level on production, reproduction, and health parameters in pasture-based transition dairy cows. Journal of Dairy Science 98(10), 7164-7182.
Roche, S.M., Ross, J.A., Schatz, C., Beaugrand, K., Zuidhof, S., Ralston, B., Allan, N., Olson, M. 2023. Impact of dystocia on milk production, somatic cell count, reproduction and culling in Holstein dairy cows. Animals 13(3), 346-354.
Sahin, A., Ulutaş, Z., Adkinson, A., Adkinson, R., Bölümü, Z., Üniversitesi, G., Turkey, T., 2012. Genetic and environmental parameters and trends for milk production of Holstein cattle in Turkey. Italian Journal of Animal Science 11, 44-51.
Satoła, A., Bauer, E.A. 2021. Predicting Subclinical Ketosis in Dairy Cows Using Machine Learning Techniques. Animals 11(7), 2131.
Schapire, R.E., 2003. The Boosting Approach to Machine Learning: An Overview. MSRI Workshop on Nonlinear Estimation and Classification, Springer, New York.
Schillings, J., Bennet, R., Rose, C.R., 2021. Exploring the potential of precision livestock farming technologies to help address farm animal welfare. Frontiers in Animal Science 2, 639678.
Shine, P., Murphy, M.D., 2021. Over 20 Years of Machine Learning Applications on Dairy Farms: A Comprehensive Mapping Study. Sensors 22(1), 52-87.
Sun, Z., Samarasinghe, S., Jago, J., 2010. Detection of mastitis and its stage of progression by automatic milking systems using artificial neural networks. Journal of Dairy Research 77(2), 168-175.
Tajaddini, M.A., Dayani, O., Khezri, A., Tahmasbi, R., Sharifi-Hoseini, M.M. 2021. Production efficiency, milk yield, and milk composition and fatty acids profile of lactating goats feeding formaldehyde-treated canola meal in two levels of dietary crude protein. Small Ruminant Research 204, 106519.
Thomas, L., Krebs, C.J., 1997. A review of statistical power analysis software. Bulletin of the Ecological Society of America 78(2), 128-139.
Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of Royal Statistical Society 58, 267-288.
Wallén, S.E., Prestløkken, E., Meuwissen, T.H.E., McParland, S., Berry, D.P., 2018. Milk mid-infrared spectral data as a tool to predict feed intake in lactating Norwegian Red dairy cows. Journal of Dairy Science 101, 6232-6243.
Wei, Z., Zhang, B., Liu, J., 2018. Effects of the dietary nonfiber carbohydrate content on lactation performance, rumen fermentation, and nitrogen utilization in mid-lactation dairy cows receiving corn stover. Journal of Animal Science and Biotechnology 14(9), 20-26.
Weld, K.A., Oliveira, R.C., Bertics, S.J., Erb, S.J., White, H.M., 2020. Hepatic pyruvate carboxylase expression differed prior to hyperketonemia onset in transition dairy cows. PLoS ONE 15, 11-30.
White, C.H., Davis, N.G., Van Emon, M.L Wyffels, S.A., DelCurto, T., 2019. Impacts of increasing levels of salt on intake, digestion, and rumen fermentation with beef cattle consuming low-quality forages. Translational Animal Science (Suppl 1), 1818-1821.
White, H.M., 2015. The role of TCA cycle anaplerosis in ketosis and fatty liver in periparturient dairy cows. Animals 5(3), 793-802.