In vivo changes in rumen fermentation and bacterial profiles after administering antibiotic resistant bacterium (Lactococcus lactis) as rumen modifier in Holstein lactating dairy cows facing ruminal acidosis challenge

Document Type : Research Article (Regular Paper)

Authors

Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

The objective of this study was to evaluate the effect of an antibiotic resistant bacterium (Lactococcus lactis; L. lactis) on nutrient apparent digestibility, fermentation parameters, ruminal pH and ammonia nitrogen, productivity and ruminal bacterial abundance in multiparous lactating Holstein cows during ruminal acidosis challenge. Four rumen-fistulated Holstein dairy cows were assigned to the following treatments as: 1) basal diet without any additive (CON) and 2) basal diet inoculated with 1×1011 cfu d-1 transgenic L. lactis (BACT) which was infused into the rumen for two consecutive periods each consisting of seven days and separated by 10 days recovery. During the study, ruminal acidosis was induced by direct introduction of ground corn grain and whey powder into the rumen (3 kg DM per head per d) for 4 days. Milk fat content was increased in cows inoculated with BACT (P<0.05). Cows treated with BACT had higher apparent digestibility of dry matter, crude protein, neutral detergent fiber, acid detergent fiber and ether extract. Both ruminal pH and ammonia nitrogen concentration did not show significant responses to the experimental treatments, while their pattern related to the sampling time, for 8 h after BACT inoculation, was significant (P<0.05). Moreover, bacterial-treated group exhibited an increase in total ruminal volatile fatty acid production and molar concentration of acetate (P<0.05). L. lactis inoculation increased (P<0.05) the abundance of lactic acid utilizing (M. elsdenii) and cellulolytic (R. flavefaciens) bacteria. Our results demonstrated that ruminal inoculation with the antibiotic resistant bacterium L. lactis might improve rumen fermentation pattern, as seen in acetate concentration, and change bacterial population in benefit of hydrogen consuming bacteria during ruminal acidosis.   

Keywords

Main Subjects


Aguilar-Gonzalez, M., Buitron, G., Shimada-Miyasaka, A., Mora-lzaguirre, O., 2016. State of the art of bio electrochemical systems: feasibility for enhancing rumen propionate production. Agrociencia 50, 149-166.
AOAC, 2005. Official Methods of Analysis. Vol.1, 18th ed. Association of Official Analytical Chemists, Arlington, VA.
Arcos-Garcia, J.L., Castrejon, F.A., Mendoza, G.D., Perez-gavilan, E.P., 2000. Effect of two commercial yeast culture with Saccharomyces cerevisiae on ruminal fermentation and digestion in sheep fed sugar cane tops. Livestock Production Science 63, 153-157.
Arowolo, M.A., He, J., 2018. Use of probiotics and botanical extracts to improve ruminant production in the tropics. Animal Nutrition 4, 241-249.
Aschenbach, J.R., Penner, G.B., Stumpff, F., Gabel, G., 2011. Ruminant nutrition symposium: role of fermentation acid absorption in the regulation of ruminal pH. Journal of Animal Science 89, 1091-1107.
Astuti, W.D., Ridwan, R., Fidriyanto, R., Rohmatussolihat, R., Sari, N.F., Sarwono, K.A., Fitri, A., Widyastuti, Y., 2022. Changes in rumen fermentation and bacterial profiles after administering Lactiplantibacillus plantarum as a probiotic. Veterinary World 15, 1969-1974.
Baah, J., Wang, Y., McAllister, T., 2009. Impact of a mixed culture of Lactobacillus casei and L. lactis on in vitro ruminal fermentation and the growth of feedlot steers fed barely-based diets. Canadian Journal of Animal Science 89, 263-271.
Bonnet, M., Lagier, J.C., Raoult, D., Khelaifia, S., 2020. Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. New Microbes and New Infections 34, 100622.
Boom, R.C., Sol, C.J., Salimans, M.M., Jansen, C.L., Wertheim-van Dillen, P.M., Van der Noordaa, J.P.,1990. Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology 28, 495-503.
Boyd, J., West, J.W., Bernard, J.K., 2011. Effects of the addition of direct-fed microbials and glycerol to the diet of lactating dairy cows on milk yield and apparent efficiency of yield. Journal of Dairy Science 94, 4616-4622.
Brogden, K.A., 2005. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology 3, 238-250.
Cao, Y., Takahashi, T., Horiguchi, K., Yoshida, N., 2010. Effect of adding lactic acid bacteria and molasses on fermentation quality and in vitro ruminal digestion of total mixed ration silage prepared with whole crop rice. Grass and Forage Science 56, 19-25.
Chaucheyras, F., Fonty, G., Bertin, G., Gouet, P., 1995. Effects of live Saccharomyces cerevisiae cells on zoospore germination, growth and cellulolytic activity of the rumen anaerobic fungus Neocallimastix frontalis MCH3. Current Microbiology 31, 201-205.
Chen, L., Guo., G., Yuan, X., Zhang, J., Li, J., Shao, T., 2016. Effects of applying molasses, lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of total mixed ration silage prepared with oat-common vetch intercrop on the Tibetan Plateau. Journal of the Science of Food and Agriculture 96, 1678-1685.
Chen, L., Zhou, C., Liu, G., Jiang, H., Lu, Q., Tan, Z., Wu, X., Fang, J., 2013. Application of lactic acid bacteria, yeast and bacillus as feed additive in dairy cattles. Journal of Food, Agriculture and Environment 11, 626-629.
Chiquette, J., Allison, M.J., Rasmussen, M.A., 2008. Prevotella bryantii 25A used as a probiotic in early lactation dairy cows: Effect on ruminal fermentation characteristics, milk production, and milk composition. Journal of Dairy Science 91, 3536-3543.
Chiquette, J., Allison, M.J., Rasmussen, M.A., 2012. Use of Prevotella bryantii 25A and a commercial probiotic during subacute acidosis challenge in mid lactation dairy cows. Journal of Dairy Science 95, 5985-5995.
Chiquette, J., Lagrost, J., Girard, C.L., Talbot, G., Li, S., Plaizier, J.C., Hindrichsen, I.K., 2015. Efficacy of the direct-fed microbial Enterococcus faecium alone or in combination with Saccharomyces cerevisiae or Lactococcus lactis during induced subacute ruminal acidosis. Journal of Dairy Science 98, 190-203.
Cho, H.S., Kim, D., Jeon, H., Somasundaram, P., Soundrarajan, N., Park, C., 2024. Bactericidal activities and biochemical features of 16 antimicrobial peptides against bovine-mastitis causative pathogens. Veterinary Research 55, 150.
Daniel, J.L.P., Queiroz, O.C., Arriola, K.G., Daetz, R.., Basso, F., Romero, J.J., Adesogan., A.T., 2018. Effects of homolactic bacterial inoculant on the performance of lactating dairy cows. Journal of Dairy Science 101, 5145-5152.
Ellis, J.L., Hindrichsen, I.K., Klop, G., Kinley, R.D., Milora, N., Bannink, A., Dijkstra, J., 2015. Effects of lactic acid bacteria silage inoculation on methane emission and productivity of Holstein Friesian dairy cattle. Journal of Dairy Science 99, 7159-7174.
Fasoli, S., Marzotto, M., Rizzotti, L., Rossi, F., Dellaglio, F., Torriani, S., 2003. Bacterial composition of commercial probiotic products as evaluated by PCR-DGEE analysis. International Journal of Food Microbiology 82, 59-70.
Ghorbani, G.R., Morgavi, D.P., Beauchemin, K.A., Leedle, J.A.Z., 2002. Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle Journal of Animal Science 80, 1977-1985.
Gotto, H., Qadis, A.Q., Kim, Y, Ikuta, K., Ichijo, T., Sato, S., 2016. Effects of bacterial probiotic on ruminal pH and volatile fatty acids during subacute ruminal acidosis (SARA) in cattle. Journal of Veterinary Medical Science 78, 1595-1600.
Hernández, J., Benedito, J.L., Abuelo, A., Castillo, C., 2014. Ruminal acidosis in feedlot: from aetiology to prevention. Scientific World Journal 1, 702572.
Huyen, N.T., Martinez, I., Pellikaan, W., 2020. Using lactic acid bacteria as silage inoculants or direct-fed microbials to improve in vitro degradability and reduce methane emissions in dairy cows. Agronomy Journal 10, 1482.
Kawai, K., Nagahata, H., Lee, N.Y., Anri, A., Shimazaki, K., 2003. Effect of infusing lactoferrin hydrolysate into bovine mammary glands with subclinical mastitis. Veterinary Research Communications 27, 539-548.
Kenney, N., 2013. Impact of direct fed microbials on nutrient utilization in beef cattle. M.Sc. Thesis, University of Kentucky, United states.
Kenney, N.M., Vanzant, E.S., Harmon, D.L., McLeod, K.R., 2015. Direct-fed microbials containing lactate-producing bacteria influence ruminal fermentation but not lactate utilization in steers fed a high-concentrate diet. Journal of Animal Science 93, 2336-2348.
Kim, H.S., Han, O.K., Kim, S.C., Kim, M.J., Kwak, Y.S., 2017. Screening and investigation Lactobacillus spp. to improve secale cereale silage quality. Journal of Animal Science 88, 1538-1546.
Kleen, J.L., Hooijer, G.A., Rehage, J., Noordhuizen, J.P., 2003. Subacute ruminal acidosis (SARA): a review. Jouranl of Veterinary Medicine Series A 50, 406-414.
Koike, S., Kobayashi., 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogens, Ruminococcus albus and Ruminococcus flavefaciens 204, 361-366.
Kubista, M., Andrade, J.M., Bengtsson, M., Forootan, A., Sjoback, R., Sjogreen, B., Strombom, L., Stahlberg, A., Zoric, N., 2006. The real-time polymerase chain reaction. Molecular Aspects of Medicine 27, 95-125.
Kung, Jr L., 2006. Direct-fed microbial and enzyme feed additives. In: Direct-fed microbial, enzyme and forage additive compendium. Miller publishing, Minnetonka, MN.
Lean, I.J., Westwood, C.T., Golder, H.M., Vermunt, J.J., 2013. Impact of nutrition on lameness and claw health in cattle. Livestock Science 156, 71-87.
Lee, S.S., Hsu, J., Mantovani, H.C., Russell, J.B., 2002. The effect of bovicin HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiology Letters 217, 51-55.
Lettat, A., Noziere, P., Silberberg, M., Morgavi, D.P., Berger, C., Martin, C., 2012. Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep. BMC Microbiology 12, 1-12.
Li, Z., Hu, Y., Yang, Y., Lu, Z., Wang, Y., 2018. Antimicrobial resistance in livestock: antimicrobial peptides provide a new solution for a growing challenge. Animal Frontiers 8, 21-29.
McAllister, T.A., Beauchemin, K.A., Alazzeh, A.Y., Baah, J., Teather, R.M., Stanford, K., 2011. The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Canadian Journal of Animal Science 91, 193-211.
Meissner, H.H., Henning, P.H., Leeuw, K.J., Hagg, F.M., Horn, C.H., Kettunen, A., Apajalahti, J.H.A., 2014. Efficacy and mode of action of selected non-ionophore antibiotics and direct-fed microbials in relation to Megasphaera elsdenii NCIMB 41125 during in vitro fermentation of an acidosis-causing substrate. Livestock Science 162, 115-125.
Monteiro, H.F., Lelis, A.L.J., Brando, V.L.N., Faccenda, A., Avila, A., Arce-Cordero, J., Silva, L.G., Dai, X., Restelatto, R., Carvalho, P., Lima, L.R., Faciola, A.P., 2020. In vitro evaluation of Lactobacillus plantarum as direct-fed microbials in high-producing dairy cows’ diets. Translational Animal Science 4, 214-228.
Mudgal, V., Baghel, R.P.S., 2010. Effect of probiotic supplementation on growth performance of pre-ruminant buffalo (Bubalus bubalis) calves. Buffalo Bulletin 29, 225-228.
Nagaraja, T.G., Lechtenberg, K.F., 2007. Acidosis in feedlot cattle. Veterinary Clinics of North America: Food Animal Practice 23, 333-350.
Nalla, K., Manda, N.K., Dhillon, H.S., Kanade, S.R., Rokana, N., Hess, M., Puniya, A.K., 2022. Impact of probiotics on dairy production efficiency. Frontiers in Microbiology 13, 805963.
Nayel, U.A., Baraghit, G.A., Ahmed, B.M., Elmeshtawy, M.A., 2019. Suckling calves’ performance and immune status as affected by Lactococcus lactis as a probiotic source. Menoufia Journal of Animal Poultry and fish production 3, 119-133.
Nocek, J.E., Kautz, W.P., 2006. Direct-fed microbial supplementation on ruminal digestion, health, and performance of pre- and postpartum dairy cattle. Journal of Dairy Science 89, 260-266.
Nocek, J.E., Kautz, W.P., Leedle, J.A.Z. and Allman, J.G., 2002. Ruminal supplementation of direct-fed microbials on diurnal pH variation and in situ digestion in dairy cattle. Journal of Dairy Science 85, 429-433.
Oskoueian, E., Jahromi, M.F., Jafari, S., Shakeri, M., Le, H.H., Ebrahimi, M., 2021. Manipulation of rice straw silage fermentation with different types of lactic acid bacteria inoculant affects rumen microbial fermentation characteristics and methane production. Veterinary Sciences 8, 100.
Ouwerkerk, D., Klieve, A.V, Forster, R.J., 2002. Enumeration of Megasphaera elsdenii in rumen contents by real-time Taq nuclease assay. Journal of Applied Microbiology 92, 753-758.
Philippeau, C., Lettat, A., Martin, C., Silberberg, M., Morgavi, D.P., Ferlay, A., Berger, C., Nozière, P., 2017. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high- or low-starch diets. Journal of Dairy Science 100, 2637-2650.
Qadis, A.Q., Goya, S., Ikuta, K., Yatu, M., Kimura, A., Nakanishi, S., Sato, S., 2014. Effects of a bacteria-based probiotic on ruminal pH, volatile fatty acids and bacterial flora of Holstein calves. Journal of Veterinary Medical Science 76, 877-885.
Qiao, G.H., Shan, A.S., Ma, N., Ma, Q.Q., Sun, Z.W., 2010. Effect of supplemental Bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows. Journal of Animal Physiology and Animal Nutrition 94, 429-436.
Rabelo, C.H.S., Basso, F.C., Lara, E.C., Jorge, L.G.O., Harter, C.J.H., Mesquita, L.G., Silva, L.F.P.R., Reis, R.A., 2018. Effects of Lactobacillus buchneri as a silage inoculant and as a probiotic on feed intake, apparent digestibility and ruminal fermentation and microbiology in wethers fed low-dry-matter whole-crop maize silage. Grass and Forage Science 73, 67-77.
Raeth-Knight, M.L., Linn, J.G., Jung, H.G., 2007. Effect of direct-fed microbials on performance, diet digestibility, and rumen characteristics of Holstein dairy cows. Journal of Dairy Science 90, 1802-1809.
SAS, 2004. SAS User’s Guide: Statistics. Version 9.4. SAS institute Inc., Cary, North Carolina. USA.
Seo, J.K., Kim, S., Kim, M.H., Upadhaya, S.D, Kam, D.K., Ha, J.K., 2010. Direct-fed Microbials for ruminant animals. Asian-Australasian Journal of Animal Sciences 23, 1657-1667.
Seymour, W.M., Campbell, D.R., Johnson, Z.B., 2005. Relationships between rumen volatile fatty acid concentrations and milk production in dairy cows: a literature study. Animal Feed Science and Technology 119, 155-169.
Shi, J., Lei, Yu., Wu, J., Li, Z., Zhang, X., Jia, Li., Wang, Y., Ma, Y., Zhang, k., Cheng, Q., Zhang, Z., Ma, Y., Lei, Z., 2023. Antimicrobial peptides act on the rumen microbiome and metabolome affecting the performance of castrated bulls. Journal of Animal Science and Biotechnology 14, 31.
Sklan, D., Ashkenazi, A., Braun, A., Devorin, A., Tabori, K., 1992. Fatty acids, calcium soaps of fatty acids, and cottonseeds fed to high yielding cows. Journal of Dairy Science 75, 2463-2472.
Stefanska, B., Sroka, J., Katzer, F., Golinski, P., Nowak, W., 2021. The effect of probiotics, phytobiotics and their combination as feed additives in the diet of dairy calves on performance, rumen fermentation and blood metabolites during the preweaning period.  Animal Feed Science and Technology 272, 114738.
Stevenson, D.M., Weimer, P.J., 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Applied Microbiology and Biotechnology 75, 165-174.
Susanto, I., Wiryawan, K.G., Suharti, S., Retnani, Y., Zahera, R., Jayanegara, A., 2023. Evaluation of Megasphaera elsdenii supplementation on rumen fermentation, production performance, carcass traits and health of ruminants: a meta-analysis. Animal Bioscience 36, 879-890.
Tang, Z., Yin, Y., Zhang, Y., Haung, R., Sun, Z., Li, T., Chu, W., Kong, X., Li, L., Geng, M., Tu, Q., 2009. Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. British journal of Nutrition 101, 998-1005.
Tanhaieian, A., Mirzaii, M., Pirkhezranian, Z., Sekhavati, M.H., 2020. Generation of an engineered food-grade Lactococcus lactis strain for production of an antimicrobial peptide: in vitro and in silico evaluation. BMC Biotechnology 20, 1-13.
Tanhaieian, A., Sekhavati, M.H., Ahmadi, F.S., Mamarabadi, M., 2018. Heterologous expression of a broad-spectrum chimeric antimicrobial peptide in Lactococcus lactis: its safety and molecular modeling evaluation. Microbial Pathogenesis 125, 51-59.
Tesfaye, A., Haillu, Y., 2019. The effects of probiotics supplementation on milk yield and composition of lactating dairy cows. The journal of Phytopharmacology 8, 12-17.
van Der Kraan, M.I., Groenink, J., Nazmi, K., Veerman, E.C., Bolscher, J.G., Nieuw Amerongen, A.V., 2004. Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides 25, 177-183.
Van koevering, M.T., Owens, F.N., Secrist, D.S., Anderson R.H., Herman., R.E., 1994. Cobactin Ⅱ for feedlot steers. Page 83 in abstracts of ASAS/ADSA Midwestern section.
Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 3583-3597.
Wang, G., Song, Q., Huang, S., Wang, Y., Cai, S., Yu, H., Zhang, J., 2020b. Effect of antimicrobial peptide Microcin J25 on growth performance, immune regulation, and intestinal microbiota in broiler chickens challenged with Escherichia coli and Salmonella. Animals 10, 345.
Weatherburn, M.W., 1967. Phenol hypochlorite reaction for determination of ammonia. Analytical Chemistry 39, 971-974.
Weimer, P.J., 1996. Why don’t ruminal bacteria digest cellulose faster? Journal of Dairy Science 79, 1496-1502.
Weinberg, Z.G., Muck, R.E., Weimer, P.J., Chen, Y., Gamburg, M., 2004. Lactic acid bacteria used in inoculants for silage as probiotics for ruminants. Applied Biochemistry and Biotechnology 118, 1-9.
Weinberg, Z.G., Shatz, O., Chen, Y., Yosef, E., Nikbahat, M., Ben-Ghedalia, D., Miron, J., 2007. Effect of lactic acid bacteria inoculants on in vitro digestibility of wheat and corn silages. Journal of Dairy Science 90, 4754-4762.
Yahfoufi, W., Danesh Mesgaran, M., Sekhavati, M.H., Vakili, A.R., Tahmoorespur, M., 2024. In vitro addition of antibiotic resistant bacteria (Lactococcus lactis) modulates ruminal nutrient disappearance kinetics of diets varying in lactose/starch ratios. Journal of Livestock Science and Technologies 12, 13-22.
Yirga, H., 2015. The use of probiotics in animal nutrition. Journal of Probiotics & Health 3, 1-10.
Yoon, J.H., Ingale, S.L., Kim, J.S., Kim, K.H., Lee, S.H., Park, Y.K., 2014. Effects of dietary supplementation of synthetic antimicrobial peptide-A3 and P5 on growth performance, apparent total tract digestibility of nutrients, fecal and intestinal microflora and intestinal morphology in weanling pigs. Livestock Science 159, 53-60.
Yusuf, M.A., Abdul Hamid, T.H., 2013. Lactic acid bacteria: Bacteriocin producer: A mini review. IOSR Journal of Pharmacy 3, 44-50.
Zebeli, Q., Dijkstra, J., Tafaj, M., Steingass, H., Ametaj, B.N., Drochner, W., 2008. Modeling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet. Journal of Dairy Science 91, 2046-2066.