Impact of climate change on thermoregulation, blood attributes and production performance in laying hens

Document Type : Research Article (Regular Paper)

Authors

1 Faculty of Nature and Life Sciences and Earth Sciences, Djilali Bounaama University, Khemis Miliana - Ain Defla 44000, Algeria

2 Department of Veterinary Sciences, Institute of Veterinary Sciences and Agricultural Sciences, University of Batna 1 - Hadj Lakhdar, Batna 05000, Algeria

Abstract

The objective of the study was to assess the impact of climate change, expressed through the Temperature Humidity Index (THI), on physiological responses, including body temperature, blood parameters, and production indicators on laying hens, the Novogen Brown strain, from the 22nd to 34th weeks of age. The experiment was conducted in northern Algeria during the summer season in two separate buildings. The first building, which housed approximately 85,000 laying hens, was modern with a controlled environment (control group). On the other hand, the second building, housing approximately 40,000 laying hens, was exposed to natural variations in the external climate (experimental group). Additionally, the temperature fluctuated between 25.2 and 39.4°C, while humidity ranged from 54.3 to 64.5%. The overall trend of the results revealed notable variations in the parameters studied in the experimental group. Body temperature showed a significant (P<0.001) increase of +0.99°C. Blood parameters also revealed significant (P<0.001) increases; the amplitudes were +0.18 for the heterophil/lymphocyte ratio, +1.82ng/mL for corticosterone, and +5.06ng/mL for cortisol. Furthermore, production performance showed significant reductions (P<0.001) in egg weight (-4.67g) and laying rate (-6.77%) with an increase of +1.75% in the egg breakage rate (P<0.001). The results of the present study highlighted the stress that laying hens may experience due to climate change, particularly when hens are housed in buildings that do not meet the standards. These situations could compromise the sustainability of the poultry industry and threaten food security, given the importance of poultry products in the human food chain. 

Keywords

Main Subjects


Alan, H.B.W., 2006. Tietz Clinical Guide to Laboratory Tests. 4th Ed. Saunders Elsevier - Health Sciences Division, St Louis, Missouri, USA.
Al-Dawood, A., Al-Tamimi, H., 2022. Acute phase proteins, endocrine and productive responses of laying hens to heat stress. Turkish Journal of Veterinary and Animal Sciences 46, 582-591.
Allahverdi, A., Feizi A., Takhtfooladi, H.A., Nikpiran, H., 2013. Effects of heat stress on acid-base imbalance, plasma calcium concentration, egg production and egg quality in commercial layers. Global Veterinaria 10, 203-207.
Attia, Y.A.E.W., De Oliveira, M.C., Abd El-Hamid, A.E.H.E., Al-Harthi, M.A., Alaqil, A., Mohammed, N.A.E.M., 2021. Cyclical heat stress and enzyme supplementation affect performance and physiological traits of Japanese quail during the early stage of laying. Animal Science Papers and Reports 39, 89-100.
Barrett, N.W., Rowland, K., Schmidt, C.J., Lamont, S.J., Rothschild, M.F., Ashwell, CM., Persia, M.E., 2019. Effects of acute and chronic heat stress on the performance, egg quality, body temperature, and blood gas parameters of laying hens. Poultry Science 98, 6684-6692.
Bayer, A.T., Barak, B., 2017. Trends and changes in tropical and summer days at the Adana sub-region of the Mediterranean region, southern Turkey. Atmospheric Research 196, 182-199.
Borges, S.A., Da Silva, A.V.F., Majorka, A., Hooge, D.M, Cummings, K.R., 2004. Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poultry Science 83, 1551-1558.
Bueno, J.P.R., Nascimento, M.R.B.D.M., Martins, J.M.D.S., Marchini, C.F.P., Gotardo, L.R.M., Sousa, G.M.R.D., Mundim, A.V., Guimarães, E.C., Rinaldi, F.P., 2017. Effect of age and cyclical heat stress on the serum biochemical profile of broiler chickens. Semina-Ciencias Agrarias 38, 1383-1392.
Campderrich, I., Nazar, F.N., Wichman, A., Marin, R.H., Estevez, I., Keeling, L.J., 2019. Environmental complexity: a buffer against stress in the domestic chick. Plos One 14, e0210270. 
Chang, Y., Wang, X.J., Feng, J.H., Zhang, M.H., Diao, H.J., Zhang, S.S., Peng, Q.Q., Zhou, Y., Li, M., Li, X., 2018. Real-time variations in body temperature of laying hens with increasing ambient temperature at different relative humidity levels. Poultry Science 97, 3119-3125.
Dohms, J.E., Metz, A., 1991. Stress – mechanisms of immunosuppression. Veterinary Immunology and Immunopathology 30, 89-109.
Eastman, C.J., Corcoran, J.M., Ekins, R.P., Williams, E.S., Nabarro, J.D., 1975. The radio immunoassay of triiodothyronine and its clinical application. Journal of Clinical Pathology 28, 225-230.
El-Lethey, H., Huber-Eicher, B., Jungi, T.W., 2003. Exploration of stress-induced immunosuppression in chickens reveals both stress-resistant and stress-susceptible antigen responses. Veterinary Immunology and Immunopathology 95, 91-101.
Erdaw, M.M., Beyene, W.T., 2022. Trends, prospects and the socio-economic contribution of poultry production in sub-Saharan Africa: a review. World’s Poultry Science Journal 78, 835-852.
He, S.P., Arowolo, M.A., Medrano, R.F., Li, S., Yu, Q.F., Chen, J.Y., He, J.H., 2018. Impact of heat stress and nutritional interventions on poultry production. World’s Poultry Science Journal 74, 647-664.
Hosseini-Vashan, S.J., Golian, A., Yaghobfar, A., 2016. Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace. International Journal of Biometeorology 60, 1183-1192. 
Imik, H., Kaynar, O., Ozkanlar, S., Gumus, R., Polat, H., Ozkanlar, Y., 2013. Effects of vitamin C and α-lipoid acid dietary supplementations on metabolic adaptation of broilers to heat stress. Revue de Médecine Vétérinaire 164, 52-59.
Kang, S., Kim, D.H., Lee, S., Lee, T., Lee, K.W., Chang, H.H., Moon, B., Ayasan, T., Choi, Y.H., 2020. An acute, rather than progressive, increase in temperature-humidity index has severe effects on mortality in laying hens. Frontiers in Veterinary Science 7, 568093.
Kendall, P.E., Webster, J.R., 2009. Season and physiological status affects the circadian body temperature rhythm of dairy cows. Livestock Science 125, 155-160.
Kim, D.H., Lee, Y.K., Lee, S.D., Kim, S.H., Lee, S.R., Lee, H.G., Lee, K.W., 2020. Changes in production parameters, egg qualities, fecal volatile fatty acids, nutrient digestibility, and plasma parameters in laying hens exposed to ambient temperature. Frontiers in Veterinary Science 7, 412.
Kim, D.H., Lee, K.W., 2023. An update on heat stress in laying hens. World’s Poultry Science Journal 79, 689-712.
Kim, H.R., Ryu, C., Lee, S.D., Cho, J.H., Kang, H., 2024. Effects of heat stress on the laying performance, egg quality, and physiological response of laying hens. Animals 14, 1076.
Kolesnik, E., Derkho, M.A., 2018. About participation of pituitary-adrenocortical hormones in regulation of blood cellular pool in chicken-broilers. Problems of Productive Animal Biology 1, 64-74.
Kolesnik, E., Derkho, M.A., 2020. To the problem of physiological adaptive homeostasis in the model of the organism of warm-blooded animals (а review). Education and Healthcare 4, 15-30.
Melesse, A., Maak, S., Von Lengerken, G., 2011. Effects of genetic group x ambient temperature interactions on performance and physiological responses of naked-neck chickens and their f1 crosses with Lohmann white and New Hampshire laying hens. Journal of Animal and Feed Sciences 20, 599-612.
Mignon-Grasteau, S., Moreri, U., Narcy, A., Rousseau, X., Rodenburg, T.B., Tixier-Boichard, M., Zerjal, T., 2015. Robustness to chronic heat stress in laying hens: a meta-analysis. Poultry Science 94, 586-600.
Mirsaiidi Farahani, M., Hosseinian, S.A., 2022. Effects of dietary stinging nettle (Urtica dioica) on hormone stress and selected serum biochemical parameters of broilers subjected to chronic heat stress. Veterinary Medicine and Science 8, 660-667.
Mishra, A., Patel, P., Jain, A., Shakkarpude, J., Sheikh, A.A., 2019. Effect of ascorbic acid supplementation on corticosterone levels and production parameters of white Leghorn exposed to heat stress. International Journal of Chemical Studies 7, 930-934.
Oguntunji, A.O., Alabi, O.M.,2010. Influence of high environmental temperature on egg production and shell quality: A review. World’s Poultry Science Journal 66, 739-750.
Nassar, F.S., Alaqil, A.A., El-Sayed, D.A.A., Kamel, N.N., Abbas, A.O., 2023. Effects of dietary intervention using spirulina at graded levels on productive performance and physiological status of quail birds reared under elevated temperatures. Agriculture 13, 789.
Nawab, A., Ibtisham, F., Li, G., Kieser, B., Wu, J., Liu, W., Zhao, Y., Nawab, Y., Li, K., Xiao, M., An, L., 2018. Heat stress in poultry production: mitigation strategies to overcome the future challenges facing the global poultry industry. Journal of Thermal Biology 78, 131-139.
Nazar, F.N., Magnoli, A.P., Dalcero, A.M., Marin, R.H., 2012. Effect of feed contamination with aflatoxin b1 and administration of exogenous corticosterone on Japanese quail biochemical and immunological parameters. Poultry Science 91, 47-54.  
Nidamanuri, A.L., Murugesan, S., Mahapatra, R., 2017. Effect of heat stress on physiological parameters of layers: a review. International Journal of Livestock Research 7, 1-17.
Novogen Brown, 2015. Guide d’élevage pondeuses commerciales. Available at https://www.novoponte.fr/wp-content/uploads/2019/03/Guide-Elevage-NovoBrown.pdf
Oluwagbenga, E.W., Tetel, V., Schober, J., Fraley, G.S., 2022. Chronic heat stress part1: decrease in egg quality, increase in cortisol levels in egg albumen, and reduction in fertility of breeder pekin ducks. Frontiers in Physiology 13, 1019741.
Ouchi, Y., Chowdhury, V.S., Cockrem, J.F., Bungo, T., 2021.Effects of thermal conditioning on changes in hepatic and muscular tissue associated with reduced heat production and body temperature in young chickens. Frontiers in Veterinary Science 7, 610319.
Pawar, S.S., Sajjanar, B., Lonkar, V.D., Kurade, N.P., Kadam, A.S., Nirmal, A.V., Brahmane, M.P., Bal, S.K., 2016. Assessing and mitigating the impact of heat stress on poultry. Advances in Animal and Veterinary Sciences 4, 332-341. 
Renaudeau, D., Collin, A., Yahav, S., De Basilio, V., Gourdine, J.L., Collier, R.J., 2011. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 1, 1-22.
Saeed, G., Abbas, M., Alagawany, A.A., Kamboh, M.E., Abd El-Hack, A.F., Khafaga, S., Chao, J., 2019. Heat stress management in poultry farms: a comprehensive overview. Journal of Thermal Biology 84, 414-425. 
Sahin, K., Sahin, N., Yaralioglu, S., 2002. Effects of vitamin C and vitamin E on lipid peroxidation, blood serum metabolites, and mineral concentrations of laying hens reared at high ambient temperature. Biological Trace Element Research 85, 35-45.
Strong, R.A., 2014. The effects of heat stress on immunity in laying hens and dairy cattle. M.Sc. Thesis, Purdue University of West Lafayette, United States.
Taylor, N.A.S., Tipton, M.J., Kenny, G.P., 2014. Considerations for the measurement of core, skin and mean body temperatures. Journal of Thermal Biology 46, 72-101.
Yerou, H., Zoghlami, M., Madani, T., Benamara, N., Rehal, M., 2021. Impact de l’indice température-humidité sur les paramètres de reproduction de vaches Holsteins en zone semi-aride de l’Ouest algérien. Livestock Research for Rural Development 33, 123.
Zaboli, G., Huang, X., Feng, X., Ahn, D.U., 2019. How can heat stress affect chicken meat quality? A review. Poultry Science 98, 1551-1556.
Zulovich, J.M., De Shazer, J.A., 1990. Estimating egg production declines at high environmental temperatures and humidities. American Society of Agricultural Engineers, Paper No. 90-4021, Michigan.