Effects of saline water stress on in vitro and in situ ruminal degradation kinetics of soybean meal in sheep

Document Type : Original Research Article (Regular Paper)

Authors

1 Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar, Iran

2 Animal Science Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.

Abstract

The study was conducted to determine the soybean meal (SBM) fermentation and degradation kinetics using gas production (GP) and nylon bag techniques in sheep under saline water stress. Eight rumen-cannulated Iranian Shaal rams that received different levels of saline water, including the control group (480), 4000, 8000, and 12000 mg/kg total dissolved solids (TDS) were used. The results showed significant differences between the experimental treatments in terms of the amount of methane produced, total GP, dry mater (DM) and crude protein (CP) degradation and the relevant parameters (P<0.05). The treatment containing 12000 mg/kg TDS had the highest GP at 48, 72, and 96 h of incubation times. Short-chain fatty acids, digestible organic matter, metabolizable energy, and net energy for lactation of SBM significantly differ between treatments (P<0.05), with the lowest amount at the 4000 mg/kg salinity level. The lowest amount of methane emission was observed in the treatment containing 8000 and 12000 mg/kg TDS. The results demonstrated that drinking water salinity significantly influenced the DM and CP degradability in SBM. The highest effective degradability values for DM and CP were observed in the treatment containing 12000 mg/kg TDS. The highest values of b fraction for DM and CP were observed in the treatment containing 8000 mg/kg TDS. Also, slowly degradable protein and effective rumen degradable protein significantly (P<0.05) increased by increasing the salinity levels. In contrast, the undegradable protein, digestible undegradable protein and metabolizable protein were decreased with increasing water salinity. In conclusion, drinking water salinity affected the soybean meal fermentation and degradation kinetics and nutritional value. The treatment containing 12000 mg/kg TDS in drinking water decreased methane production and metabolizable protein in sheep.

Keywords

Main Subjects


References
AFRC. 1993. Energy and Protein Requirements of Ruminants. CAB International, Wallingford, UK.
Albuquerque, I.R.R., Araujo, G.G.L., Tadeu, V.T.V., Andrade Moura, J.H., Costa, R.G., Gois, E.G.C., Costa, S.A.P., Campos, F.S., Queiroz, M.A.A., Santos, N.M.S., 2020. Saline water intake effects performance, digestibility, nitrogen and water balance of feedlot lambs. Animal Production Science 60, 1591–1597. DOI: 10.1071/AN19224
Alhraishawi, A.A., Alani, W.K., 2018. The co-fermentation of organic substrates: a review, performance of biogas production under different salt content. Journal of Physics: Conference Series 1032, 1-14. DOI:10.1088/1742-6596/1032/1/012041
Alves, J.N., Araujo, G.G.L., Neto, S.G., Voltolini, T.V., Santos, R.D., Rosa, P.R., Guan, L., Mcallister, T., Neves, A.L.A., 2017. Effect of increasing concentrations of total dissolved salts in drinking water on digestion, performance and water balance in heifers. Journal of Agriculture Science 155, 847–856. DOI: 10.1017/S0021859617000120
Anele, U.Y., Südekum, K.H., Hummel, J., Arigbede, O.M., Oni, A.O., Olanite, J.A., Böttger, C., Ojo, V.O., Jolaosho, A.O., 2011. Chemical characterization, in vitro dry matter and ruminal crude protein degradability and microbial protein synthesis of some cowpea (Vigna unguiculata L. Walp) haulm varieties. Animal Feed Science and Technology  163, 161–169. DOI:10.1016/j.anifeedsci.2010.11.005
Ansah, T., Algma, H.A., Kwabla, D. H., 2016. Variety and phosphate fertilizer dose effect on nutrient composition, in vitro digestibility and feeding value of cowpea haulm. Journal of Animal Science and Technology  58, 1-7. DOI 10.1186/s40781-016-0103-7
AOAC. 2005. Official Methods of Analysis. 18th ed. Association of Official Analytical Chemists, Washington, DC, USA.
Araújo, G.G.L., Costa, S.A.P., Moraes, S.A., Queiroz, M.A.A., Gois, G.C., Santos, N.M.S.S., Albuquerque, I.R.R., Moura, J.H.A., Campos, F.S., 2019. Supply of water with salinity levels for Morada Nova sheep. Small.Ruminant Research 171: 73–76. DOI:10.1016/j.smallrumres.2019.01.001
Attia-Ismail, S.A,. 2015. Rumen Physiology under High Salt Stress, Desert Research Center, Cairo, Egypt. DOI: 10.1201/b19862-24
Attia-Ismail, S.A., Ahlam, A.R., Asker, A.R.T., 2008. Effect of salinity level in drinking water on feed intake, nutrient utilization, water intake and turn over and rumen function in sheep and goats. Egyptian Journal of Sheep and Goats Sciences 3, 77–92.
Bhatta, R., Tajima, K., Takusari, N., Higuchi, K., Enishi, O., Kurihara, M., 2006. Comparison of sulfur hexafluoride tracer technique, rumen simulation technique and in vitro gas production techniques for methane production from ruminant feeds. International Congress Series 1293, 58-61. DOI: 10.1016/j.ics.2006.03.075
Chen, X.B., 1995. "Fitcurve" macro, IFRU. The Macaulay Institute. Aberdeen. UK.
Costa, E.C.B., Araújo, G.G.L., Oliveira, G.S., Santos, E.M., Henriques, L.T., Perazzo, A.F., Zanine, A.M., Pereira, G.A.,Pinho, R.M.A., 2019. Effect of salt concentrations on in vitro rumen fermentation of cellulose, starch, and protein. South African Journal of Animal Science 49, 1139-1147. DOI: 10.4314/sajas.v49i6.17
Eckard, R., Grainger, C., De Klein, C., 2010. Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livestock Science 130,47-56. DOI:10.1016/j.livsci.2010.02.010
El-Shaer, H.M., Squires, V.R., 2016. Halophytic and Salt-Tolerant Feedstuffs Impacts on Nutrition, Physiology and Reproduction of Livestock. 1st Ed. Science Publishers Book, Boca Raton. DOI: 10.1201/b19862
Hemsley, J.A., Hogan, J.P., Weston, R.H., 1975. Effect of high intakes of sodium chloride on the utilization of a protein concentrate by sheep II. Digestion and absorption of organic matter and electrolytes. Australian Journal of Agricultural Research 26, 715–727. DOI: 10.1071/AR9750715
Ibaneza, M.A., de Blasb, C., Camarab, L., Mateosb, G.G., 2020. Chemical composition, protein quality and nutritive value of commercial soybean meals produced from beans from different countries: A meta-analytical study. Animal Feed Science and Technology 267, 1-15. DOI: 10.1016/j.anifeedsci.2020.114531
Iranian Council of Animal Care,1995. Guide to the Care and Use of Experimental Animals, vol. 1. Isfahan University of Technology Isfahan, Iran.
Jayanegara, A., Yantina, N., Novandri, B., Laconi, E.B., Nahrowi, N., Ridla, M., 2017. Evaluation of some insects as potential feed ingredients for ruminants: chemical composition, in vitro rumen fermentation and methane emissions. Journal of the Indonesian Tropical Animal Agriculture 42, 247-254. DOI: 10.14710/jitaa.42.4.247-254
Kaliber, M., Koluman, N., Silanikove, N., 2016. The physiological and behavioral basis for the successful adaptation of goats to severe water restriction under hot environmental conditions. Animal 10, 82–88. DOI: 10.1017/S1751731115001652
Kattnig, R.M., Pordomingo, A.J., Schneberger, A.G., Duff, G.C., Wallace, J.D., 1992. Influence of saline water on intake, digesta kinetics, and serum profiles of steers. Journal of Range Management 45, 514-518.
Kaushik, P., Amlan, K.P., Sahoo, A., 2015. Evaluation of feeds from tropical origin for in vitro methane production potential and rumen fermentation in vitro. Spanish Journal of Agricultural Research 13, 1-12. DOI: 10.5424/sjar/2015133-7467
Khalilipour, G., Maheri-Sis, N., Shaddel-Teli, A., 2019. Effects of saline drinking water on growth performance and mortality rate of Japanese quails (Coturnix coturnix Japonica). Journal Of Agriculture and Nature 22, 942-947. DOI:10.18016/ksutarimdoga.vi.553366
 Lee, D.H., Behera, S.K., Kim, J.W., Park, H.S., 2009. Methane production potential of leachate generated from Korean food waste recycling facilities: A lab-scale study. Journal of Waste Management 29, 876–882. DOI: 10.1016/j.wasman.2008.06.033
Leite, P.G., Marques, J.I., Furtado, D.A., Pinheiro, J.,Neto, L., 2019. Ethology, physiological, and ingestive responses of sheep subjected to different temperatures and salinity levels of water. International Journal of Biometeorology 63, 1091–1098. DOI: 10.1007/s00484-019-01724-y
Liu, C., Li, X.H., Chen, Y.X., Cheng, Z.H., Duan, Q.H., Meng, Q.H.,  Tao, X.P., Shang, B., Dong, H.M., 2016. Age-related response of rumen microbiota to mineral salt and effects of their interactions on enteric methane emissions in cattle. Microbial Ecology 73, 590-601. DOI 10.1007/s00248-016-0888-4
Maheri-Sis, N., Abdolahi-Zive, B., Salamatdoust-Nobar, R., Ahmadzadeh, A., Aghajanzadeh-Golshani, A., Mohebbizadeh, M., 2011. Determining nutritive value of soybean straw for ruminants using nylon bags technique. Pakistan Journal of Nutrition 10, 838-841. DOI: 10.3923/pjn.2011.838.841
Makkar, H.P.S., 2005. In vitro gas methods for evaluation of feeds containing phytochemicals. Animal Feed Science Technology. 193, 921-319. DOI:10.1016/j.anifeedsci.2005.06.003
Mayberry, D.E., 2003. Does the effect of salt on rumen microbial populations limit the production of sheep grazing saltbush pastures? Honorurs thesis, School of Animal Biology. University of Western Australia Crawley.
McGregor, B.A., 2004. Water quality and provision for goats. "A report for the Rural Industries Research and Development Corporation"; "RIRDC project no DAV 202A"; Bibliography: p. 16-18.
Mdletshe, Z.M., Chimonyyo, M., Marufu, M.C., Nsahlai, I.V., 2017. Effects of saline water consumption on physiological responses in Nguni goats. Small Ruminant Research 153, 209–211. DOI:10.1016/j.smallrumres.2017.06.019
Menke, K.H., Steingass, H., 1988. Estimation of energetic feed value obtained fromchemical analysis and in vitro production using rumen fluid. Animal Research. 28, 7-55.
Mirzaei-Aghsaghali, A., Maheri-Sis, N., 2016. Factors affecting mitigation of methane emission from ruminants: Microbiology and biotechnology strategies. Journal of Animal Behaviour and Biometeorology 4, 22-31. DOI: 10.14269/2318-1265/jabb.v4n1p22-31
Mirzaei-Aghsaghali, A., Maheri-Sis, N., Mansouri, H., Razeghi, M.E., Safaei, A.R., Aghajanzadeh-Golshani, A., Alipoor, K., 2011. Estimation of the nutritive value of tomato pomace for ruminant using in vitro gas production technique. African Journal of Biotechnology 10, 6251-6256.
NRC, 2001. Nutrient Requirements of Dairy Cattle. 7th Revised Edn. National Research Council. National Academy Press, Washington, DC, USA.
NRC, 2007. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. National Research Council. National Academies Press, Washington, DC, USA.
Ørskov, E., McDonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurement weight according to rate of passage. Journal of Agricultural Science 92, 499-503. 1979. DOI: 10.1017/S0021859600063048
Pishdadi-Motlagh, M.A., Salamatdoust-Nobar, R., Maheri-Sis, N., Safaei, A.R.,  Aghajanzadeh-Golshani, A., 2023. Evaluating the effect of drinking saline water on fermentation kinetics, methane production and nutritional value of alfalfa hay and barley grain using in vitro gas production technique in sheep. Journal of Kafkas Üniversitesi Veteriner Fakültesi Dergisi 29, 109-116. DOI: 10.9775/kvfd.2022.28587
Potter, B.J., Walker, B.J., Forrest, W.W., 1972. Changes in intraluminal function of sheep when drinking saline water. British Journal of Nutrition 27, 75-83. DOI: 10.1079/bjn19720071
Runa, R.A., Brinkmann, L., Riek, A., Hummel, J., Gerken, M., 2019. Reactions to saline drinking water in Boer goats in a free-choice system. Animal. 13, 98–105. DOI: 10.1017/S1751731118000800
Rusydi, A.F., 2018. Correlation between conductivity and total dissolved solid in various type of water: A review. Earth and Environmental Science 118, 1-6. DOI: 10.1088/1755-1315/118/1/012019
SAS, 2001. SAS Statistical Analysis. Version 9.1. System SAS Institute, Cary, North Carolina. USA.
Sorensen, K.B., Canfield, D.E., Oren, A., 2004. Salinity responses of benthic microbial communities in a solar slatern. Applied and Environmental microbiology. 70, 1608-1616.DOI: 10.1128/AEM.70.3.1608-1616.2004
Thomas, D.T., Rintoul, A.J., Masters, D.G., 2007. Sheep select combinations of high and low sodium chloride, energy and crude protein feed that improve their diet. Applied Animal Behaviour Science 105, 140-153. DOI: 10.1016/j.applanim.2006.05.015
Tulu, D., 2022. Physiological, hematological and biochemical responses in hararghe-highland lamb subjected to water salinity levels of Lake Basaka in a semiarid area of Ethiopia. Heliyon. 8, 1-14. DOI: 10.21203/rs.3.rs-639332/v1
Umar, S., Munir, M.T., Azeem, T., Ali, S., Umar, W., Rehman, A., Shah, M.A., 2014. Effects of water quality on productivity and performance of livestock: A mini review. Veterinaria 2, 11-15.
Valizadeh R., Razzaghi, A., Trahhomi, M., 2019. Utilization of Halophytic Plants in Ruminant Nutrition. 1st Ed. FUM Press, Mashhad, IR. [In persian]
Valtorta, S.E., Gallardo, M.R., Sbodio, O.A., Revelli, G.R., Arakaki, C., Leva, P.E., Gaggiotti, M.,Tercero, E.J., 2008. Water salinity effects on performance and rumen parameters of lactating grazing Holstein cows. International Journal of Biometeorology 52, 239-247. DOI: 10.1007/s00484-007-0118-3
 
Van‌ Soest, P.J., 1994. Nutritional Ecology of the Ruminant. Cornell University Press. Ithaca. NY.
Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 3583–3597. DOI: 10.3168/jds.S0022-0302 (91)78551-2
Vosooghi‐Postindoz, V., Tahmasbi, A., Naserian, A.A., Valizade, R., Ebrahimi, H., 2018. Effect of water deprivation and drinking saline water on performance, blood metabolites, nutrient digestibility, and rumen parameters in Baluchi lambs. Iranian Journal of Applied Animal Science 8, 445-456.
Wood, C.D., Badve, V.C., 2001. Recent developments in laboratory methods for the assessment of ruminant feeds, science booklet. BAIF Development Research Foundation and Natural Resources Institute UK, Pune, India.
Yang, P., Jun, N.J., Zhao, J.B., Zhang, G., Fei Huang, C., 2020. Regression equations of energy values of corn, soybean meal, and wheat bran developed by chemical composition for growing pigs. Animals. 10,1-17. DOI: 10.3390/ani10091490
YapeKii, W., Dryden, M.C.L.G., 2005. Effect of drinking saline water on food and water intake, food digestibility, and nitrogen and mineral balances of russa deer stags (Cervus timorensis russa). Animal Science 81, 99-105. DOI: 10.1079/ASC41070099
Yousfi, I., Salem, H.B., Aouadi, D., Abidi, S., 2016. Effect of sodium chloride, sodium sulfate or sodium nitrite in drinking water on intake, digestion, growth rate, carcass traits and meat quality of Barbarine lamb. Small Ruminant Research 143, 43-52. DOI:10.1016/j.smallrumres.2016.08.013
Zoidis, E., Hadjigeorgiou, I., 2017. Effects of drinking saline water on food and water intake, blood and urine electrolytes and biochemical and hematological parameters in goats: A preliminary study. Animal Production Science 58, 1822–1828. DOI: 10.1071/AN16539