References
Abdollahi-Arpanahi, R., Pakdel, A., Nejati-Javaremi, A, Moradi Shahre Babak, M., 2013. Comparison of different methods of genomic evaluation in traits with different genetic architecture. Journal of Animal Production 15, 65-77 (In Farsi).
Auinger, H.S., Wimmer, V., Auinger, H.J., Albrecht, T., Schoen, C.C., Schaeffer, L., Erbe, M., Ober, U., Reimer, C., Badke, Y., VandeHaar, P., 2018. Framework for the analysis of genomic prediction data using R (synbreed). Available at https://cran.rproject.org/web/packages/synbreed/index.html
Bernardo, R., Yu, J., 2007. Prospects for genome-wide selection for quantitative traits in maize. Crop Science 47, 1082-1090.
Carlborg, Ö., Andersson-Eklund, L., Andersson, L., 2001. Parallel computing in interval mapping of quantitative trait loci. Journal of Heredity 92, 449-451.
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou, T., Li, Mu., Xie, J., Lin, M., Geng, Y., Li, Y., 2019. xgboost: Extreme Gradient Gradient Boosting. Available at:
https://cran.r-project.org/web/packages/xgboost/index.html.
Fernando, RL., Grossman, M., 1989. Marker-assisted selection using best linear unbiased prediction. Genetic Selection Evolution 2, 246-477.
Ghafouri-Kesbi, F., Rahimi-Mianji, G., Honarvar, M., Nejati-Javaremi, A., 2017. Predictive ability of random forests, Gradient Boosting, support vector machines and genomic best linear unbiased prediction in different scenarios of genomic evaluation. Animal Production Science 57, 229-236.
González-Recio, O., Rosa, GJM., Gianola, D., 2014. Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits. Livestock Science 166 217-231.
Guo, P., Zhu, B., Niu, H., Wang, Z., Liang, Y., Chen, Y., Zhang, L., Ni, H., Guo, Y., El Hamidi, AH., Gao, X., Gao, H., Wu, X., Xu, L., Li, J., 2018. Fast genomic prediction of breeding values using parallel Markov chain Monte Carlo with convergence diagnosis. BMC Bioinformatics 19, 3.
Hastie, T.J., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning. 2nd ed., Springer, New York, USA.
Ma, L., Birali, Runesha, H., Dvorkin, D., Garbe, G.R., 2008. Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies. BMC Bioinformatics 9, 315.
Kim, B., Kim, S., 2018. Prediction of inherited genomic susceptibility to 20 common cancer types by a supervised machine-learning method. Proceedings of the National Academy of Sciences 115, 1322-1327.
Matukumalli, L.K., Schroeder, S., DeNise, S.K., 2011. Analyzing LD blocks and CNV segments in cattle: Novel genomic features identified using the Bovine HD BeadChip. Illumina Inc. San Diego, USA.
Matthews, D., Kearney, J.F., Cromie, AR., 2019. Genetic benefits of genomic selection breeding programmes considering foreign sire contributions. Genetic Selection Evolution 51, 40.
Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E., 2001. Prediction of total genetic value using genome wide dense marker maps. Genetics 157, 1819-1829.
Neves, H.H.R., Carvalheiro, R., Queiroz, S.A., 2012. A comparison of statistical methods for genomic selection in a mice population. BMC Genetics 13,100.
Ødegård, J., Indahl, U., Strandén, I., Meuwissen, T.H.E., 2018. Large‑scale genomic prediction using singular value decomposition of the genotype matrix. Genetic Selection Evolution 50, 6.
Oguto, J.O., Piepho, H.P., Schulz-Streeck, T., 2011. A comparison of random forests, Gradient Boosting and support vector machines for genomic selection. BMC Proceedings 5, 11.
Orozco-Arias, S., Tabares-Soto, R., Ceballos, D., Guyot, R., 2017. Parallel Programming in Biological Sciences, Taking Advantage of Supercomputing in Genomics. Advances in Computing 735, 627-643.
R Core Team., 2022. R: A language and environment for statistical computing. Vienna, Austria. Available at: https://www.R-project.org/.
Singh, P.P., Nagpal R., Pal, R., Nagamani, V., Rao, B.B.P., 2007. MemHunt: Dynamic Memory Leak Analyzer and Garbage Collector. In Proceedings of the 2nd National Conference on Emerging Trends and Applications in Computer Engineering, Ajmir, India.
Smith, C., 1967. Improvement of metric traits through specific genetic loci. Animal Production 9, 349-358.
Thompson, K., Charnigo, R., 2015. Parallel Computing in Genome-Wide Association Studies. Journal of Biometrics and Biostatistics 6, 1000e131.
VanRaden, PM., 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science 91, 4414-4423.
Wang, X., Xu, Y., Hu, Z., Xu, C., 2018. Genomic selection methods for crop improvement: Current status and prospects. The Crop Journal 6, 330-340.
Wu, XL., Sun, C., Beissinger, TM., Rosa, GJ., Weigel, KA., Gatti Nde, L., Gianola, D., 2012. Parallel Markov chain Monte Carlo bridging the gap to high-performance Bayesian computation in animal breeding and genetics. Genetics Selection Evolution 44, 29.
Ying, X., 2019. An overview of overfitting and its solutions. Journal of Physics: Conference. Series 1, 1168.
Zhang, H., Yin, L., Wang, M., 2019. Genomic selection for agricultural economic traits in maize, cattle, and pig populations. Frontiers in Genetics 10,189.