Genetic mapping of multiple pleiotropic quantitative trait loci in livestock exploiting a multiplicative mixed model

Document Type : Original Research Article (Regular Paper)

Authors

Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.

Abstract

A multiple marker analysis approach in the framework of the mixed-effects model was developed, allowing all markers of the entire genome to be included simultaneously in the analysis. The approach was extended to multitrait situations. The proposed method is a one-stage process, which simultaneously models the residuals and genetic effects. In addition, it can easily accommodate co-variates, extra sources of variation, fixed or random including polygenic effects and it can easily be generalized to experimental and crossing designs commonly used. The developed approach considered an unstructured co-variance model for the traits residuals and fitted a multiplicative model for the trait by marker effects. The particular multiplicative model considered herein was the factor analytic model. This provided a parsimonious model specification to limit the numberof parameters to be estimated. It was shown through the simulation study that modelling multiple phenotypes in a single linkage analysis simultaneously could markedly increase the power, compared with modelling of each phenotype separately. Correlations among phenotypes can arise from several different causal processes, which may have different implications for the power and performance of the multivariate linkage analysis. Obviously, further studies using the approach suggested herein for multitrait quantitative trait loci (QTL) mapping that specifically consider different situations, should be undertaken. Furthermore, the efficiency of the model to distinguish between a pleiotropic QTL and closely linked QTL affecting different traits is another area that needs more investigation.

Keywords

Main Subjects


  • Allison, D.B., Heo, M., 1998. Meta-analysis of linkage data under worst-case conditions: A demonstration using the human OB region. Genetics 148, 859-866.
  • Ball, R.D., 2001. Bayesian methods for quantitative trait loci mapping based on model selection: Approximate analysis using the Bayesian information criterion. Genetics 159, 1351-1364.
  • Broman, K.W., Speed, T.P., 2002. A model selection approach for the identification of quantitative trait loci in experimental crosses. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64, 641-656.
  • Cullis, B.R., Gogel, B. J., Verbyla, A.P., Thompson, R., 1998. Spatial analysis of multi-environment early generation trials. Biometrics 54, 1-18.
  • Esmailizadeh, A., Bottema, C.D.K., Sellick, G.S., Verbyla, A. P., Morris, C.A., Cullen, N. G., Pitchford, W. S., 2008. Effects of the myostatin F94l substitution on beef traits. Animal Science 86, 1038–1046.
  • Esmailizadeh K.A., Mohammadabadi M.R. 2010. A molecular genome scan to map quantitative trait loci affecting bovine carcass weight.Agricultural Biotechnology Journal 1, 117-130.
  • Falconer, D.S., Mackay, T.F.C., 1996. Introduction to Quantitative Genetics. 4th ed., Longmans Green, Harlow, Essex, UK.
  • Fisher, R.A., 1954. Statistical Methods for Research Workers, 12th ed., Oliver and Boyd, Edinburgh, UK.
  • Gilbert, H., Le Roy, P., 2003. Comparison of three multitrait methods for QTL detection. Genetics Selection Evolution 35, 281-304.
  • Gilbert, H., Le Roy, P., 2004. Power of three multitrait methods for QTL detection in crossbred populations. Genetics Selection Evolution 36, 347-361.
  • Gilmour, A.R., 2007. Mixed model regression mapping for QTL detection in experimental crosses. Computational Statistics & Data Analysis 51, 3749-3764  
  • Gilmour, A.R., Gogel, B.J., Cullis B.R., Thompson, R., 2006. ASReml user guide Release 2.0 VSN International Ltd., Hemel Hempstead, HP1 1ES, UK.
  • Gilmour, A.R., Thompson, R., Cullis, B.R., 1995. Average information REML: An efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51, 1440–1450.
  • Goddard, M.E., 2001. The validity of genetic models underlying quantitative traits. Livestock Production Science 72, 117-127.
  • Haldane, J.B.S., 1919. The combination of linkage values, and the calculation of distance between linked factors. Genetics 8, 299–309.
  • Haley, C.S., 1999. Advances in quantitative trait locus mapping. Proceedings of From Jay L. Lush to Genomics: Visions for Animal Breeding and Genetics, Iowa State University, Ames, Iowa, USA, pp. 47-59.
  • Henshall, J.M., Goddard, M.E., 1999. Multiple-trait mapping of quantitative trait loci after selective genotyping using logistic regression. Genetics 151, 885-894.
  • Jiang, C., Zeng, Z.B., 1995. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140, 1111-1127.
  • Johnson, R.A., Wichern, D.W., 1998. Applied Multivariate Analysis. 4th ed., Prentice Hall, Englewood Cliffs, New Jersey, USA.
  • Kao, C.H., Zeng, Z.B., Teasdale, R.D., 1999. Multiple interval mapping for quantitative trait loci. Genetics 152, 1203-1216.
  • Knott, S.A., 2005. Regression-based quantitative trait loci mapping: Robust, efficient and effective. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 1435-1442.
  • Knott, S.A., Haley, C.S., 2000. Multitrait least squares for quantitative trait loci detection. Genetics 156, 899-911.
  • Korol, A.B., Ronin, Y.I., Itskovich, A.M., Peng, J., Nevo, E., 2001. Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics 157, 1789-1803.
  • Korol, A. B., Ronin, Y.I., Kirzhner, V. M., 1995. Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics 140: 1137-1147.
  • Lawley, D.N., Maxwell, A.E., 1971. Factor Analysis as a Statistical Method. 2nd ed., Butterworths, London. UK.
  • Mangin, B., Thoquet, P., Grimsley, N., 1998. Pleiotropic QTL analysis. Biometrics 54, 88-99.
  • Meuwissen, T.H., Goddard, M.E., 2004. Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data. Genetics Selection Evolution 36, 261-279.
  • Moradian H., Esmailizadeh A.K., Sohrabi S., Mohammadabadi M.R. 2015. Identification of quantitative trait loci associated with weight and percentage of internal organs on chromosome 1 in Japanese quail. Journal of Agricultural Biotechnology 6, 143-158.
  • Moradian H., Esmailizadeh A.K., Sohrabi S.S., Nasirifar E., Askari N., Mohammadabadi M.R., Baghizadeh A. 2014. Genetic analysis of an F2 intercross between two strains of Japanese quail provided evidence for quantitative trait loci affecting carcass composition and internal. Molecular Biology Reports 41, 4455-4462.
  • Piepho, H.P., 2000. A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. Genetics 156, 2043-2050.
  • Piepho, H.P., Gauch, H.G., JR., 2001. Marker pair selection for mapping quantitative trait loci. Genetics 157, 433-444.
  • Sen, S., Churchill, G.A., 2001. A statistical framework for quantitative trait mapping. Genetics 159, 371-387.
  • Sillanpaa, M.J., Corander, J., 2002. Model choice in gene mapping: What and why. Trends in Genetics 18, 301-307.
  • Smith, A., Cullis, B., Thompson, R., 2001. Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics 57, 1138-1147.
  • Smith, A.B., Cullis, B.R., Thompson, R., 2005. The analysis of crop cultivar breeding and evaluation trials: An overview of current mixed model approaches. Agricultural Science 143, 1–14.
  • Sohrabi S., Esmailizaseh K.A., Mohammadabadi M.R., Moradian H. 2014. Mapping quantitative trait loci underlying Kleiber ratio and identification of their mode of action in an F2 population of Japanese quail (Coturnix coturnix japonica). Agricultural Biotechnology Journal 6, 111-122.
  • Sorensen, P., Lund, M.S., Guldbrandtsen, B., Jensen, J., Sorensen, D., 2003. A comparison of bivariate and univariate QTL mapping in livestock populations. Genetics Selection Evolution 35, 605-622.
  • Stearns, T. M., Beever, J. E., Southey, B. R., Ellis, M., F. Mckeith, K., Rodriguez-Zas, S. L., 2005. Evaluation of approaches to detect quantitative trait loci for growth, carcass, and meat quality on swine chromosomes 2, 6, 13, and 18. I. Univariate outbred F2 and sib-pair analyses. Animal Science 83, 1481-1493.
  • Stuart, A., Ord, J.K., Arnold, S., 1999. Kendall's Advanced Theory of Statistics.Classical Inference and the Linear Model, Vol. 2A, 6 ed., Oxford University Press Inc., New York, USA.
  • Thompson, R., Cullis, B., Smith, A., Gilmour, A., 2003. A sparse implementation of the average information algorithm for factor analytic and reduced rank variance models. Australian & New Zealand Journal of Statistics 45, 445-459.
  • Verbyla, A.P., Cullis, B.R., Thompson, R., 2007. The analysis of QTLs by simultaneous use of the full linkage map. Theoretical and Applied Genetics 116, 95-111.
  • Verbyla, A.P., Eckermann, P.J., Thompson, R., Cullis, B.R., 2003. The analysis of quantitative trait loci in multi-environment trials using a multiplicative mixed model. Australian Journal of Agricultural Research 54, 1395–1408.
  • Walling, G.A., Visscher, P.M., Andersson, L., Rothschild, M.F., Wang, L., Moser, G., Groenen, M.A.M., Bidanel, J.P., Cepica, S., Archibald, A.L., Geldermann, H., de Koning, D.J., Milan, D., Haley, C.S., 2000. Combined analyses of data from quantitative trait loci mapping studies: Chromosome 4 effects on porcine growth and fatness. Genetics 155, 1369-1378.
  • Weller, J.I., Wiggans, G.R., Vanraden, P.M., Ron, M., 1996. Application of a canonical transformation to detection of quantitative trait loci with the aid of genetic markers in a multi-trait experiment. Theoretical and Applied Genetics 92, 998-1002.
  • Wood, I.A., Moser, G., Burrell, D.L., Mengersen, K.L., Hetzel, D.J., 2006. A meta-analytic assessment of a thyroglobulin marker for marbling in beef cattle. Genetics Selection Evolution 38, 479-494.
  • Xu, S., 2003. Estimating polygenic effects using markers of the entire genome. Genetics 163, 789-801.