Evaluation of the nutritional value of Iranian melon (Cucumis melo cv. Khatooni) wastes before and after ensiling in sheep feeding

Document Type : Original Research Article (Regular Paper)

Authors

1 Assistant Professor, Department of Animal Science, Faculty of Agriculture and Animal Science, University of Torbat-e Jam, Torbat-e Jam, Iran.

2 Assistant Professor, Research Center of Special Domestic Animals, University of Zabol, Zabol, Iran.

Abstract

There is little information on the nutritive value of ensiled Iranian melon (Cucumis melo cv. Khatooni) wastes (IMW) for sheep feeding; therefore, the nutritional value of IMW was investigated before and after ensiling. Treatments were 1) Fresh IMW as control [FIMW], 2) Ensiled IMW [EIMW], 3) Ensiled IMW with 1% grape vinegar [EIMW+1% GV], and 4) Ensiled IMW with 2% grape vinegar [EIMW+2% GV]. The IMW samples (after harvesting the ripe fruits) were ensiled in the polyethylene tubes for 60 days. Ensiling IMW increased the contents of dry matter (DM) and crude protein (CP). The concentration of CP was also increased (P<0.05) in the silages supplemented with GV. However, neutral and acid detergent fiber (NDF and ADF, respectively) and ash contents were unchanged among treatments. The addition of grape vinegar to the silage increased the concentrations of lactic and acetic acids and decreased NH3-N compared to control silage (P<0.05). However, total volatile fatty acids (TVFA) and pH of silages were not significantly affected by the treatments. The highest values of gas production parameters (gas12, 24, 48, 72 h and bgas), true dry matter (TDMD) and organic matter degradability (TOMD) were observed in FIMW (P<0.05). Ensiling IMW without additive, decreased TDMD and TOMD, whereas treating silages with GV increased its digestibility (P<0.05). The highest partitioning factor (PF) and efficiency of microbial mass yield (EMMY) were detected in EIMW+2% GV (P<0.05). Generally, it can be concluded that IMW can be used as a potential forage source in sheep feeding either as fresh or ensiled by-product. However, because of the high moisture content of IMW, ensiling with 2% GV could improve the nutritional value and fermentation parameters.

Keywords

Main Subjects


  • AFRC., 1993. Energy and Protein Requirements of Ruminants. CAB International, Wallingford, UK, pp. 9-18.
  • AOAC., 2005. Official Methods of Analysis. 18th ed. Association of Official Analytical Chemists, Washington, DC, USA.
  • Bakshi, M.P.S., Wadhwa, M., 2013. Evaluation of cannery and fruit wastes as livestock feed. Indian Journal of Animal Sciences 83, 1198-1202.
  • Barnett, A.J.G., Reid, R.L., 1957. Studies on the production of volatile fatty acids from the grass by rumen liquor in an artificial rumen. Journal of Agricultural Science 48, 315-321.
  • Blummel, M., Becker, K., 1997. The degradability characteristics of fifty-four roughages and roughage neutral-detergent fibres as described by in vitro gas production and their relationship to voluntary feed intake. British Journal of Nutrition 77, 757-768.
  • Der Bedrosian, M.C., Nestor Jr, K.E., Kung Jr, L., 2012. The effects of hybrid, maturity, and length of storage on the composition and nutritive value of corn silage. Journal of Dairy Science 95,5115-5126.
  • Dijkstra, J., France, J., Davies, D.R., 1998. Different mathematical approaches to estimating microbial protein supply in ruminants. Journal of Dairy Science 81, 3370-3384.
  • Dijkstra, J., Kebreab, E., Bannink, A., France, J., Lopez, S., 2005. Application of the gas production technique to feed evaluation systems for ruminants. Animal Feed Science and Technology 123, 561-578.
  • Dolores Megias, M., Hernandez, F., Madrid, J., Martinez-Teruel, A., 2002. Feeding value, in vitro digestibility and in vitro gas production of different by-products for ruminant nutrition. Journal of the Science of Food and Agriculture 82, 567-582.
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350-356.
  • FAO., 2017.  FAOSTAT. http://www.fao.org/faostat/en/#data/QC.
  • Firkins, J.L., 1996. Maximizing microbial protein synthesis in the rumen. The Journal of Nutrition 126, 1347S-1354S.
  • Getachew, G., Blümmel, M., Makkar, H.P.S., Becker, K., 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Animal Feed Science and Technology 72, 261-281.
  • Henderson, N., 1993. Silage additives. Animal Feed Science and Technology 45, 35-56.
  • Hendriks, A.T.W.M., Zeeman, G., 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 100, 10-18.
  • Herrmann, C., Heiermann, M., Idler, C., 2011. Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresource Technology 102, 5153-5161.
  • Hristov, A. N., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J., Rotz, A., Dell, C., Adesogan, A., Yang, W., Tricarico, J., Kebreab, E., Waghorn, G., Dijkstra, J., Oosting, S. 2013. Mitigation of greenhouse gas emissions in livestock production–A review of technical options for non-CO2 emissions (P.J. Gerber, B. Henderson and H.P.S. Makkar; eds.). FAO Anim. Prod. Health Paper No. 177. FAO, Rome, Italy.
  • Jones, G.A., McAllister, T.A., Muir, A.D., Cheng, K.J., 1994. Effects of sainfoin (Onobrychis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Applied Environmental Microbiology 60, 1374-1378.
  • Kazemi, M., Valizadeh, R., 2019. Nutritive value of some rangeland plants compared to Medicago sativa. Journal of Rangeland Science 9, 136-150.
  • Keles, G., Demirci, U., 2011. The effect of homofermentative and heterofermentative lactic acid bacteria on conservation characteristics of baled triticale–Hungarian vetch silage and lamb performance. Animal Feed Science and Technology 164, 21-28.
  • Kim, S.W., Less, J.F., Wang, L., Yan, T., Kiron, V., Kaushik, S.J., Lei, X.G., 2019.  Meeting global feed protein demand: challenge, opportunity, and strategy. Annual Review of Animal Biosciences 7, 221-243.
  • Koc, F., Coskuntuna, L., 2003. The comparison of the two different methods on the determination of organic acids in silage fodders. Animal Production Science 44, 37-47.
  • Komolong, M.K., Barber, D.G., McNeill D.M., 2001. Post-ruminal protein supply and N retention of weaner sheep fed on a basal diet of lucerne hay (Medicago sativa) with increasing levels of quebracho tannins. Animal Feed Science and Technology 92, 59-72.
  • Lawal, T.E., Owoseni, A., Atobatele, O.E., Ademola, S.G., Akomolafe, D.O., 2016. Evaluation of the nutritive value of citrus pulp degraded with Penicillium notatum and Penicillium citrinum. American Journal of Research Communication 4, 130-140.
  • Lima, C.A.C., Lima, G.F.C., Costa, R.G., Medeiros, A.N., Aguiar, E.M., Juniors V.L., 2012. Efeito de niveis de melão em substituicao ao milho moido sobre o desempenho, o consumo e a digestibilidade dos nutrientes em ovinos Morada Nova. Revista Brasileira de Zootecnia  41, 164-171.
  • Makkar, H.P., 2004. Recent advances in the in vitro gas method for evaluation of nutritional quality of feed resources. Assessing quality and safety of animal feeds. FAO Animal Production and Health Series 160, 55-88.
  • Makkar, H.P.S., 2010. In vitro screening of feed resources for efficiency of microbial protein synthesis (pp.106-144). In: In vitro screening of plant resources for extra-nutritional attributes in ruminants: Nuclear and Related Methodologies (Ed.), New York, Springer.
  • Mallek-Ayadi, S., Bahloul, N., Kechaou, N., 2017. Characterization, phenolic compounds and functional properties of Cucumis melo L. peels. Food Chemistry 221, 1691-1697.
  • McDonald, P., Henderson, A.R., Heron, S.J.E., 1991. The Biochemistry of Silage, 2nd ed. Chalcombe Publications, Marlow, England. pp. 341.
  • Menke, K.H., Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28, 7-55.
  • Miyaji, M., Matsuyama, H., 2016. Lactation and digestion in dairy cows fed ensiled total mixed ration containing steam-flaked or ground rice grain. Animal Science Journal 87, 767-774.
  • Oliveira, F.L.C., Barreto Junior, R.A., Minervino A.H.H., 2016. Effects of sudden melon intake on ruminal parameters of non-adapted sheep. Pesquisa Veterinaria Brasileira 36, 378-382.
  • Oliveira, F.L.C., Barreto-Junior, R.A., Minervino, A.H.H., Reis, L.F., Araujo, C.A.S.C., Rodrigues, F.A.M.L., Sousa, R.S., Gameleira, J.S., Souza, F.J.A., Mori, C.S., Ortolani, E.L., 2015. Avaliacao hemogasometrica, bioquimica ehematologica de ovinos suplementados com melao. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia 67, 1272-1278.
  • Ørskov, E. R., McDonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science 92, 499-503.
  • Santos, M.C., Kung, Jr. L., 2016. Short communication: the effects of dry matter and length of storage on the composition and nutritive value of alfalfa silage. Journal of Dairy Science 99, 1-4.
  • SAS, 2002. SAS User’s Guide: Statistics. Version 9.1. SAS Institute, Inc., Cary, NC.
  • Sun, Z.H., Liu, S.M., Tayo, G.O., Tang, S.X., Tan, Z.L., Lin, B., He, Z.X., Hang, X.F., Zhou, Z.S., Wang, M., 2009. Effects of cellulase or lactic acid bacteria on silage fermentation and in vitro gas production of several morphological fractions of maize stover. Animal Feed Science and Technology 152, 219-231.
  • Thomas, P.C., Chamberlain, D.G., Kelly, N.C., Wait, M.K., 1980. The nutritive value of silages Digestion of nitrogenous constituents in sheep receiving diets of grass silage and grass silage and barley. British Journal of Nutrition 43, 469-479.
  • Umana, R., Staples, C.R., Bates, C.B., Wilcox, C.J., Mahanna, W.C., 1991. Effects of a microbial inoculant and (or) sugarcane molasses on the fermentation, aerobic stability, and digestibility of Bermuda grass ensiled at two moisture contents. Journal of Animal Science 69, 4588-4601.
  • Vercoe, E.P., Makkar, H.P.S., Schlink, A.C., 2010. In vitro screening of plant resources for extra nutritional attributes in ruminants: nuclear and related methodologies (Ed.), In vitro screening of feed resources for efficiency of microbial protein synthesis, New York, Springer. pp. 106-144.
  • Yadeghari, S., Malecky, M., Zamani, P., Dehghan-Banadaky, M., 2013. In vitro evaluation of the effects of Lavandula officinalis and Origanum vulgare essential oils on ruminal fermentation using concentrate and roughage type substrates. Journal of Livestock Science and Technologies 1, 1-12.
  • Young, K.M., Lim, J.M., Der Bedrosian, M.C., Kung Jr, L., 2012. Effect of exogenous protease enzymes on the fermentation and nutritive value of corn silage. Journal of Dairy Science 95, 6687-6694.