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Abstract    Genotype imputation from low-density to high-density (SNP) chips is an important step 

before applying genomic selection, because denser chips can provide more reliable genomic predic-

tions. In the current research, the accuracy of genotype imputation from low and moderate-density 

panels (5K and 50K) to high-density panels in the purebred and crossbred populations was assessed. 

The simulated populations included two purebred populations (lines A and B) and two crossbred 

populations (cross and backcross). Three scenarios were assessed for selecting the subset of the ref-

erences that used to impute un-genotyped loci of animals in the validation set, where: 1) high rela-

tionship with validation set, 2) randomly, and 3) high inbreeding selecting. Imputing the individuals 

of validation set 5K and 50K to marker density 777K using the various combinations of reference set 

was performed by FImpute software. The imputation accuracies were calculated using two methods 

including Pearson correlation coefficient (PCC) and concordance rate (CR). The results showed that 

imputation accuracy in the purebred populations lines A and B was higher than the cross and back-

cross populations. When the reference set has been selected based on high relationships, the genotype 

accuracy in lines A and B was the highest, and there was less difference between imputation from 

5K and 50K density to 777K compared to the other subset selection methods. In the crossbred pop-

ulation with imputation from 50K to 777K, the imputation accuracy was the highest in the state of 

the randomly selected of the reference population (0.98 and 0.97 for PCC and CR, respectively). In 

the backcross population, the imputation accuracy was the lowest when the reference set selected 

according to the high inbreeding, which it could be resulting from the lower homozygosis in these 

populations. 
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Introduction 

Recent advances in DNA sequencing technology and 

availability of high-density single nucleotide polymor-

phism (SNP) genotyping platforms have provided 

unique opportunities to promote the breeding programs 

in livestock, poultry and plant species to better under-

stand the genetic basis of complex traits. More accurate 

breeding values were obtained by such genomic infor-

mation (Momen et al., 2018a). The superiority of ge-

nomic selection is possible only when high densities of 

SNP panels are used to track genes and the effects of 

QTLs on the traits. Unfortunately, even with decreasing 

continuously the genotyping costs, only a small fraction 

of the population was genotyped by these high-density 

panels. In order to reduce the genomic selection costs, 

often a larger fraction of population is genotyped by 

low-density and low cost SNP panels and then imputed  

 to a higher density. Imputing from a low-density panel 

to a high-density SNP panel has been recently used a 

common and operational method in the various species 

of genome breeding programs (Pimentel et al., 2013). 

To estimate genomic breeding values, dense marker 

panels are needed to use the linkage disequilibrium 

(LD) between quantitative trait loci (QTL) and markers 

which they can control traits by partitioning them into 

direct, indirect, and total SNP effects (Hayes et al., 

2009; Momen et al., 2018b). A dense marker map is also 

prerequisite for appropriate mapping in order to pre-

cisely locate QTL (Meuwissen et al., 2001). Although 

high-density genotyping is possible for dairy cattle, gen-

otyping thousands of individuals with high-density 

panel is still expensive. To reduce the genotyping costs, 

the reference population can be genotyped by a high- 
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density panel, while the other animals are genotyped by 
a low-density panel in which markers are spaced evenly. 

Then, by using information resulted from the reference 
population, genotypes for missed loci can be inferred for 

individuals genotyped with the low-density panel 
(Habier et al., 2009). 

Many factors have been suggested as influencing im-

putation accuracy, including reference population’s 

structure, the number of animals in reference popula-

tion, allele frequency, the position of SNPs on the chro-

mosome and the density of SNP used for the reference 

population. (Bolormaa et al., 2015; Calus et al., 2014). 

Jattawa et al. (2016) studied the imputation accuracy 

from low-density chips to intermediate-density chips in 

Thailand's multi-generational dairy cattle. They showed 

that the imputation accuracies varied from 76.79% 

through 93.94% depending on which algorithm imple-

mented, and the combined family and population–based 

algorithm has a higher imputation accuracy than the 

other algorithms. Studying the imputation accuracy on 

Holstein, Guernsey and Ayrshire population by use of 

FImpute and Beagle software, Larmer et al. (2014) re-

ported that there was very little difference in imputation 

accuracy between these two methods when the Holstein 

reference population was used; however, FImpute algo-

rithm outperformed when the size of reference popula-

tion in Guernsey and Ayrshire population was reduced. 

By studying of two dairy cattle populations of France 

and Scandinavia, Dassonneville et al. (2012) reported 

that with increasing the number of reference population 

animals the markers imputation error rate reduced up to 

5.5% and 3.9% in the Scandinavian Peninsula and 

France, respectively. According to them, the lower error 

rate of imputation between France's dairy cattle resulted 

from using more markers due to the way of markers edi-

tion and having denser genome. By assessing the impu-

tation accuracy using different densities of SNP panel in 

the sheep multi-bred population of New Zealand, Ven-

tura et al. (2016) demonstrated that imputation from 5K 

panel to high-density (600K) was slightly better (0.6%) 

than imputation from 5K to 50K. Two step imputation 

from 5K to 50K and then from 50K to high-density 

(600K) outperformed imputation from 5K to 600K. 

Also, they reported a slight loss in imputation accuracy 

when a large fixed reference population was used com-

pared to a smaller within-bred reference population. Ca-

lus et al. (2014) assessed the different measures of gen-

otype imputation accuracy and showed that correlation 

between the true and imputed genotypes is the most ben-

eficial and unbiased method for calculating the imputa-

tion accuracy. 

There is a few research about the level of imputation  

 accuracy in the purebred and crossbred populations with 

different relationship levels. Therefore, the present re-

search was carried out in order to study the different sce-

narios of selecting livestock composition in the refer-

ence populations and also the effects of 5K and 50K 

panels promotion to 777K panel density in the purebred 

and crossbred populations. 

 

Materials and methods 

Populations (Purebred and crossbred lines)  

Populations were simulated by using the QMSim soft-

ware (Sargolzaei et al., 2009). In the first simulation 

step, to create the initial LD between marker and QTL 

and establish mutation - drift equilibrium a historical 

population constituted of 500 animals (250 males and 

250 females) was created. Then 1000 randomly mated 

generations without changing numbers and 1000 mated 

generations with a gradual increase of numbers to 4000 

animals were simulated. The number of males in the last 

base population generation was considered 50 animals, 

then to create the first purebred population (line A) 20 

males and 200 females were selected from the last base 

population generation. In this step 10 generations were 

simulated in which there was two progenies per dam. To 

create the second purebred population (line B), 20 males 

and 200 females were selected from the last generation 

of the historical population and 10 mating generations 

were produced. For lines A and B the genotype, pheno-

type and pedigree information related to the generations 

8, 9 and 10 was registered. In these populations the gen-

eration 10 was selected as a validation set and the gen-

erations 8 and 9 were selected as the reference set. In the 

next step, the hybrid populations (cross and backcross) 

were simulated. The cross population was created from 

mating 20 males from generation 10 of line A and 200 

females from generation 10 of line B. The backcross 

population was generated from mating 20 males from 

generation 10 of line A and 200 females from cross pop-

ulation. One randomly mating generation was produced, 

as illustrated in Figure1. The genotype, phenotype and 

pedigree information that were related to the backcross 

population was registered. In this study, the animals of 

backcross population were considered as validation set 

(imputation) and animals of generation 10 from line A 

and animals of cross population considered as reference 

set. 

 

Genome and genotypes 

In the genome simulation section, a genome consisting 

of 29 pairs of autosomes with different length and simi- 
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Figure 1. Schematic representation of the simulation steps. The pure breeding schemes (Line A, Line B) 

started in step 2 and consisted of 20 males and 200 females that were selected from the last historical pop-

ulation generation. The crossbreeding scheme started in step 3 and consisted of 20 males from generation 

10 of line A and 200 females from generation 10 of line B (Cross). The backcross population consisted of 

20 males from generation 10 line A and 200 females cross from population. 
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lar to the bovine chromosomes size was simulated. 
Then, the number of 777026 bi-allelic markers and 725 

bi-allelic QTLs with the initial allele frequency identical 
to evenly distribution were randomly positioned on the 

genome. QTLs allele effects were sampled from a 
Gamma distribution with a shape parameter of 0.4. Ta-

ble 1 shows the parameters that were used for simula-

tion. 
After simulating data for 777K density, sampling for 

5K and 50K densities was performed and the 5K and 
50K genome files for imputation populations (valida-

tion set) were established. In the next step, the quality 
control was performed and SNPs with minor allele fre-

quency (MAF) less than 0.01 and the monomorphic loci 
were deleted in which numbers of 369091 SNPs were 

deleted and 407935 SNPs with known loci were left for 
analysis. After sampling, the 5K and 50K panels consti-

tuted of 4975 SNPs and 50992 SNPs, respectively. Act- 

 ually 4975 and 50992 SNPs from 5K and 50K panels 

corresponded with 777K panel. 

 

Imputation scenarios 

Four scenarios were considered for imputing missing 

genotypes. In all of these scenarios the animals of refer-

ence population were genotyped by the high-density 

panel (777K). While the other animals in imputation 

population were genotyped with low-density (5K) or in-

termediate-density (50K) panels that using the infor-

mation that were obtained from reference population the 

genotypes of missed loci for the genotyped individuals 

with low-density panel were inferred. 

In scenarios 1 and 2, which were related to the purebred 

populations’ imputation of lines A and B, the animals of 

generations 9 and 10 of lines A and B were selected as 

reference population, which had genotypes 

Table 1. Parameters used for the stimulation of populations and genome 

Information of population simulation Population structure 

 Step 1:Creating base population 

500[0]500[1000]4000[2000] Number of generations of base population 

50 Number of males in the last generation of base population 

 Step 2: population of line A 

20 Number of males from base population 

200 Number of females from base population 

10 Number of generations 

Tbv/h positive assortative Mating system 

10 Number of iterations 

0.25 Heritability 

1 Phenotype variance 

 Population of line B 

20 Number of males from base population 

200 Number of females from base population 

10 Number of generations 

Tbv/l positive assortative Mating system 

 Cross population: 

20 Number of males from the last generation of line A 

200 Number of females from the last generation of line B 

0.5 Male sex ratio 

1 Number of generation 

Random Mating system 

 Backcross population: 

20 Number of males from the last generation of line A 

200 Number of females from cross population 

0.5 Male sex ratio 

1 Number of generation 

Random Mating system 

Genome simulation information Genome structure 

29 Number of chromosomes 

26794 Number of markers(for each chromosome) 

Evenly Distribution of Markers 

25 Number of QTL(for each chromosome) 

Random QTL distribution 
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from 777K panel. To impute the 5K and 50K, the gen-

eration 10 within lines was used which included 400 an-

imals and were considered as the validation population. 

In scenario 3, the cross population animals were se-

lected as the validation population and animals of gen-

eration 10 from line A and generation 10 from line B 

were selected as the reference population and used to 

impute the cross population. In scenario 4, the backcross 

animals were selected as the validation population and 

the animals of generation 10 from line A and cross ani-

mals were selected as the reference population and used 

to impute the animals of backcross population. In all 

scenarios of imputation, the number of reference popu-

lation animals was 800 of which 400 animals were se-

lected as the reference population by 3 methods includ-

ing: 1) animals which had the highest relationship level 

with the reference population, 2) animals which had 

been selected randomly, and 3) animals which had a 

high inbreeding.  

Genotype imputation was performed by FImpute 

software (Sargolzaei et al., 2011). FImpute uses the ped-

igree imputation algorithm and then uses the population 

imputation steps based on an Overlapping Sliding Win-

dow (OSW) method. In comparison to most of popula-

tion imputation software, FImpute assumes that all ani-

mals are related and uses OSW to find the haplotype 

fragments, which have associated with common ances-

tor between individuals. Initially, imputation is con-

ducted in the family individuals if pedigree information 

is available and then the close relatives are studied by 

searching for the large haplotype regions in reference 

population by OSW and going to search in smaller hap-

lotype regions in the distant relatives and this process is 

frequently repeated. 

 

Imputation accuracy 

Concordance rate (CR) and Pearson correlation coeffi-

cient (PCC) as imputation accuracy criteria for each an-

imal were individually calculated with 10 repetitions. 

Concordance rate was expressed as follow: 

CR=M/G                                                                      (1) 

where, M is the proportion of matching genotypes; and 

G represent the total proportion of genotypes. Several 

reports show that PCC does not relate to the allele fre-

quency (Calus et al., 2014) and the relationship between 

them is as follows: 

PCCanim=
∑ (gij-g̅)(ĝ-ĝ̅)
Lk
j=1

∑ (gij-g̅)
2 ∑ (ĝij

Lk
j=1

-ĝ̅)
2Lk

j=1

                                        (2) 

 where 𝐿 shows the total number of markers to be im-

puted. 𝑔𝑖𝑗 and 𝑔𝑖𝑗 show the  observed and imputed gen-

otypes for 𝑆𝑁𝑃𝑗 of individual 𝑖; �̅�𝑖𝑗  and �̅�𝑖𝑗 show the 

average values of observed and imputed genotypes, re-

spectively.   
 

Results and discussion 

The results of imputation accuracies estimated based on 

CR and PCC methods in different combinations of the 

densities and the subset selection scenarios in the refer-

ence population are shown in Figure 2. Our results were 

in agreement with the previous study conducted by Ma 

et al. (2013). They obtained the accuracy results similar 

to ours by imputing genotypes from 5K to HD panel in 

Swedish and Finnish red cattle. We showed that the im-

putation accuracy in the purebred populations (lines A 

and B) were higher compared with the other populations 

(crossbred and backcross populations). These results 

confirmed that imputation accuracy depends on the rel-

evant haplotypes number in the reference set. This can 

be resulted most likely due to a more relationship to 

each other through common ancestor in purebred popu-

lations, which they share more haplotypes and the ge-

netic distance between haplotypes in the reference set 

and the training set. Therefore, imputation accuracy in 

the purebred populations is higher than hybrid popula-

tions (Moghaddar et al., 2015). 

In the purebred populations under different states of 

selecting reference population, a significant improve-

ment in imputation accuracy were observed when the 

individuals of reference population were selected based 

on high relationship with validation set in compared to 

subset selection based on inbreeding and random. These 

results show that with increasing of relationship be-

tween the imputed and reference animals can increase 

the imputation accuracy. This was in agreement with the 

results of Ma et al. (2013) and Hickey et al. (2012). 

In the purebred populations, the imputation accuracy 

from 50K density to 777K density in all scenarios was 

significantly higher compared to the imputation accu-

racy from 5K to 777K density (P<0.01). This demon-

strates that due to sharing more haplotypes, a higher re-

lationship has more importance in the results of imputa-

tion accuracy, and panel density is more important when 

there is a lower genomic relationship between validation 

set and the animals of reference set. Ventura et al. 

(2014) reported that the imputation accuracy is from 5K 

to 50K in multi-breed beef population with concordance 

rate static. Results showed that imputation accuracy is 

in the highest level when there is a close relationship 

between reference set and validation set. 
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Figure 2. Accuracy of genotype imputation based on subset selection in the reference set (high 

relationship with validation set, random and high inbreeding) using low-density (5K) and inter-

mediate-density (50K) panels to high-density (777K) panel based on Pearson correlation coeffi-

cient (PCC) and concordance rate (CR). Accuracies estimated in different population structure 

including: purebreds (line A (a) and line B (b)), cross (c) and backcross (d). The PCC and CR 

with different letters on their boxes indicate significant differences (empirical P< 0.01). 
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In crossbred population when imputation was per-

formed from 50K density to 777K density panel, the im-

putation accuracy in the randomly selected of reference 

set was high (with PCC of 97.13%), while the accuracy 

increased in the highly related reference population 

(97.17%) and inbred reference set (96.78%). Higher im-

putation accuracy in the crossbred population in the 

state of randomly selected reference set can be a result 

of complication of breed composition in animal popula-

tions. Consequently, the common haplotype blocks-

based relationships (Identity by descent) are used when 

the close relationships exist and haplotypes are small to 

maintain the relation between different generations. But 

in the crossbred populations, due to fracture in the hap-

lotype blocks, lower accuracy is observed and in such 

situations the allele frequency-based replacement can 

have more precision (Moghaddar et al., 2015). This 

means that the number and size of common haplotype 

fragments among the animals in crossbred populations 

is probably fewer and smaller than haplotype fragments 

in purebred populations. Therefore, the lower accuracy 

that were obtained can be a result from a smaller number 

and shorter fragments of common haplotype among an-

imals in the reference and validation sets (Ventura et al., 

2016). 

By studying different strategies to impute genotype 

in crossbred Girolando dairy cattle (Gyr and Holstein), 

Oliveira Junior et al. (2017) showed that the highest im-

putation accuracy is when Girolando were used in ref-

erence population; however, using Guernsey animals 

solely cause to reduce the imputation accuracy. Their 

results showed that segregating haplotypes in Girolando 

population in compared to purebred haplotypes had 

more effect on accuracy and crossbred Girolando, 

which could be included in reference population to cre-

ate the best imputation accuracies. In the backcross pop-

ulation, the imputation accuracy in the state of the 

highly related of reference population was significantly 

higher (P<0.01). When the reference population was se-

lected randomly and highly inbreeded, the accuracy re-

duced significantly (P<0.01). Lower imputation accu-

racy in the state of selecting the reference according to 

inbreeding in the crossbred and backcross populations 

can be resulted from lower importance of inbreeding in 

the crossbred populations due to lower homozygosity in 

these populations which was announced by the previous 

study (Ventura et al., 2016). 

These results show that imputation accuracy depends 

on panel density, population structure and the way of 

selecting reference population. It means that there is no 

single method for providing a higher imputation accura- 

 cy for all scenarios. Nevertheless, an important ad-

vantage of imputation is reducing the genomic selection 

costs and increasing the accuracy of genome breeding 

values prediction. In general, performance and accuracy 

of imputation depend on several factors. 

 

Conclusions 

Higher imputation accuracy in the purebred popula-

tions in comparison to crossbred populations showed 

that haplotypes segregated in the purebred sets had a 

greater influence on the imputation accuracy than the 

crossbred haplotypes. Higher imputation accuracy in 

purebred populations based on the selection of individ-

uals from the reference population, most closely resem-

bling with validation set population, reveals the im-

portance of the same haplotypes shared between indi-

viduals by common ancestors and transitions from one 

generation to the next. But, in the crossbred populations, 

due to segregation and recombination of haplotype dur-

ing generations, the accuracy was lower. Also, the re-

sults of current study provide the useful information on 

reducing of cost of genotyping in pure and crossbred 

populations for future genomic selection strategy. 
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ستنباط ژنوتیپی از تراشهچکیده     الا گام مهمی پیش ها با تراکم بنوکلئوتیدی با تراکم پائین به تراشهشکلی تکهای چندا

ه تری را ارائاطمینانهای ژنومی قابل بینیتر می توانند پیشهای متراکمباشددددی ز را تراشدددهاز انجام انتخاب ژنومی می

پائین ژنوتیپی از پنلدهند. در ا ن تحقیق صدددحی ا مپیو  می با تراکم  بالا  به  (50K)و متوسددد  (5K)های  تراکم 

(777K) سددازی شدددم شددامل دو جمعیی های شددبیههای خالص و آمیخته مورد ارز ابی قرار گرفی. جمعییدر جمعیی

ها در جمعیی مرجع کراس( بودند. سه سنار و برای انتخاب دامکراس و بک( و دو جمعیی آمیخته )Bو  A  نلاخالص )

های تعیین ژنوتیپ نشددددم ایوانا  در جمعیی تد ید اسدددتدادم شددددی مورد ارز ابی قرار گرفی و برای ا مپیو  جا گام

شدند. ا مپیو  افراد  همخونی بالا انتخاب -3تصادفی  -2رابطه خو شاوندی بالا با جمعیی تد ید  -1سنار وها بر اساس: 

شانگری  50Kو  5Kجمعیی تد ید  ستدادم از ترکیب 777Kبه تراکم ن ستدادم از نرم با ا های مختلف جمعیی مرجع با ا

شد. صحی FImputeافزار  ستگی پیرسون انجام  ضر ب همب  (CR)و نرخ مطابقی  (PCC)های ا مپیو  با دو روش 

صحی ا مپیو شان داد که  شد. نتا ج ن سبه  های آمیخته بالاتر از جمعیی Bو  A های نلاهای خالص   در جمعییمحا

صدددحی ا مپیو  ژنوتیپی در االتی که جمعیی مرجع بر اسددداس رواب   B و A های نلاکراس بود. در کراس و بک

در مقا سه  777Kبه  50Kو  5Kخو شاوندی بالا انتخاب شدم بود بالاتر ن بود و تداو  کمتری بین ا مپیو  از تراکم 

صدددور  گرفی  777Kبه  50Kهای د گر انتخاب جمعیی مرجع بود. در جمعیی کراس زمانی که ا مپیو  از با روش

(. CRو  PCCبه ترتیب بر اساس  97/0و  98/0صحی ا مپیو  در االی انتخاب جمعیی مرجع تصادفی بالاتر ن بود )

واند تتر ن اد قرار داشی که میمرجع همخون در پائینکراس صحی ا مپیو  در االی انتخاب جمعیی بک در جمعیی

 باشد. تر همخونی به دلیل هموز گوسیتی کمتر در ا ن جمعییبه دلیل اهمیی پائین

 


